数形结合思想在中学数学中的应用学院名称:数学计算机科学学院专业名称:10数学与应用数学专业姓名:吴晨晨同组人员:王帅帅指导教师:戴普庆安徽师范大学本科毕业论文数形结合思想在中学数学中的应用摘要数与形是数学中两个最主要最基本的研究对象,数与形是紧密相连的,在一些特定的条件下,数与形是可以相互转化的,这就是“数形结合”。数形结合作为数学学习的一个重要思想,在数学学科中占有重要的地位。本文中主要介绍了数形结合研究背景及意义;在中学教学中的地位;应用数形结合的原则和途径以及数形结合思想在中学解题中的应用等问题。通过分析、比较和归纳充分展现数形结合思想在解题中的特点和优越性,从而在实际教学中要将数形结合思想融汇到课堂中,培养学生加强数形结合思想的意识。关键词数与形;数形结合;中学数学ThecombinationofshapesandnumberinthemiddleschoolAbstractThenumberandshapearethetwomostmajorandbasicresearchobjectsinmathematics,andtheyhavecloserelationship.Insomespecificconditions,theyareinterchangeable,whichisnamedthecombinationofshapesandnumber.Thecombinationofshapesandnumberisanimportantthoughtinmathematicsstudying,whileitoccupiesanimportantpositioninmathematics,too.Thisarticlemainlyintroduces:theresearchbackgroundandsignificanceofthecombinationofshapesandnumber,it'spositioninthemiddleschoolteaching,theprinciplesandwaysofit'sapplication,andtheapplicationofthecombinationofshapesandnumberthoughtinthemiddleschoolproblemsolvingandsoon.Throughtheanalysis,comparisonandinduction,itshowsthecombinationofshapesandnumberthought'scharacteristicandadvantagesintheproblemsolving,whichinactualteaching,weshouldformtogetherwiththisthoughttotheclassroom,trainingstudentstostrengthentheconsciousnessofthecombinationofshapesandnumberthought.KeywordsNumberandshapeThecombinationofnumberandshapesThemathematicsofthemiddleschool目录摘要....................................................................1Abstract..................................................................2前言....................................................................41数形结合思想方法概述.....................................................41.1数形结合思想的研究背景..............................................41.2数形结合思想的研究意义及作用........................................52数形结合思想方法在中学数学教学中的地位...................................52.1从新课程标准对思维能力的要求看数形结合..............................52.2从新课程教学内容的特点来看数形结合..................................52.3从高考题设计背景来看数形结合........................................63数形结合思想应用的途径和原则.............................................63.1.数形结合的途径.....................................................63.2.数形结合的原则.....................................................74数形结合思想方法在中学解题中的应用.......................................74.1“数”中思“形”.....................................................774.1.2利用数轴解决集合的有关运算....................................84.1.3数形结合思想在解决对称问题中的应用............................84.1.4利用函数图像比较函数值的大小..................................94.1.5数形结合思想在解方程问题中的应用..............................94.2“形”中觅“数”....................................................105结束语.................................................................11参考文献.................................................................11致谢............................