电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

利润最大化与二次函数VIP免费

利润最大化与二次函数_第1页
1/6
利润最大化与二次函数_第2页
2/6
利润最大化与二次函数_第3页
3/6
第1页共6页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共6页利润最大化与二次函数二次函数在市场经济的今天,用途特别广泛。利润最大问题,就是一个典型。下面就举例说明。1、住宿问题某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加元.求:(1)房间每天的入住量(间)关于(元)的函数关系式.(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(2008年贵阳市)分析:因为,每个房间每天的定价每增加10元时,就会有一个房间空闲,现在增加x元,折合x10个10元,所以,有x10个房间空闲;空房间数+入住房间数=60,这样第一问就解决了;房间收费数额应该等于房间的定价乘以房间的数量,这样第二问的等量关系也找到了;在解答第三问时,关键是理解利润的意义,利润=每天的房间收费数-每个房间每天支出的各种费用。解:(1)房间每天的入住量(间)关于(元)的函数关系式是:y=60-x10,(2)宾馆每天的房间收费(元)关于(元)的函数关系式是:z=(200+x)(60-x10),(3)宾馆客房部每天的利润(元)关于(元)的函数关系式是:W=(200+x)(60-x10)-20(60-x10),整理,得:W=-110x2+42x+10800=-110(x2-420x)+10800第2页共6页第1页共6页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共6页=-110(x-210)2+15210,因为,a=-110<0,所以,函数有最大值,并且,当x=210时,函数W有最大值,最大值为15210,当每个房间的定价为每天410元时,有最大值,最大值是15210元。2、投资问题例2、随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图12-①所示;种植花卉的利润y2与投资量x成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(2008年•南宁市)分析:根据图像和题意知道y1是x的正比例函数,并且知道图像上的一个点的坐标为P(1,2),这样就可以求出正比例函数的解析式;仔细观察抛物线的特点,抛物线经过原点,顶点也在原点,因此,解析式一定是形如y=ax2的形式。解:(1)因为,y1是x的正比例函数,设,y1=kx,因为,图像经过点P(1,2),所以,2=k,第3页共6页第2页共6页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共6页所以,利润y1关于投资量x的函数关系式是y1=2x,x>0;因为,y2是x的二次函数,设,y2==ax2,因为,图像经过点Q(2,2),所以,2=4a,所以,a=12,所以,利润y2关于投资量x的函数关系式是y2=12x2,x>0;(2)这位专业户以8万元资金投入种植花卉和树木,其中投资花卉x万元,他获得的利润是:y=y1+y2=12x2+2×(8-x)=12x2-2x+16=12(x-2)2+14,因为,a=12>0,所以,函数有最小值,并且,当x=2万元时,函数y有最小值,最小值为14万元;因为,对称轴是x=2,当0≤x≤2时,y随x的增大而减小,所以,当x=0时,y有最大值,且为y=12(x-2)2+14=16,当2<x≤8时,y随x的增大而增大,当x=8时,y有最大值,且为y=12(x-2)2+14=32,所以,当x=8万元时,获得的利润最大,并且为32万元。因此,这位专业户以8万元资金投入种植花卉和树木,他至少获得14万元利润;他能获取的最大利润是32万元。3、存放问题例3、我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

利润最大化与二次函数

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部