(二)启发诱导、讲解新知,探索结论;教学环节教学过程教师活动学生活动设计意图(二)启发诱导、讲解新知,探索结论;1、提出问题(让学生带着问题去学习):(1)、概括直线与圆的有哪几种位置关系,你是怎样区分这几种位置关系的?(2)如何用语言描述三种位置关系?(3)回顾点与圆的位置关系,你能不能探索圆心到直线的距离与圆的半径之间的数量关系。(小组交流合作)2、讲解新知:利用直线与圆的交点情况,引导学生分析、小结三种位置关系:(1)直线与圆没有交点,称为直线与圆相离(2)直线与圆只有一个交点,称为直线与圆相切,此时这条直线叫做圆的切线,这个公共点叫切点。(3)直线与圆有两个交点,称为直教师层层设问,让学生思维自然发展,教学有序的进入实质部分。在第(1)个问题中,学生如果回答“从直线与圆的交点个数上来进行区分”,则顺利地进行后面的学习;如果回答“类比点与圆的位置关系比较圆半径r与圆心到直线的距离d的大小进行区分”,则在补充交点个数多少的区分方法。教师引导小组合作、组织学生完成教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调“只有观察、思考、猜测、概括学生回答问题,概括定义通过学生概括定义,培养学生归纳概括能力。由点与圆的位置关系的性质与判定,迁移到直线与圆的位置关系,教师适时指导,探索圆心到直线的距离与圆的半径之间的数量关系。在本环节中教师应关注如下几点:1、学生是否有独自的见解;线与圆相交。此时这条直线叫做圆的割线。1、大胆猜想,探索结论:微机演示三个图形,观察圆心到直线的距离d与圆半径r之间的大小关系。(当d›r时,直线在圆的外部,与圆没有交点,因此此时直线与圆相离;当d=r时,直线与圆只有一个交点,此时直线与圆相切;当d‹r时,直线与圆有两个交点,此时直线与圆相交)即:d›r直线与圆相离d=r直线与圆相切d‹r直线与圆相交反之:若直线与圆相离,有d›r吗?若直线与圆相切,有d=r吗?若直线与圆相交,有d‹r吗?总结:d›r直线与圆相离d=r直线与圆相切d‹r直线与圆相交一个交点”的含义教师重复演示引导学生探索,学生归纳总结之后教师对提出的问题给予肯定回答,并强调:利用圆心到直线的距离d与圆半径r之间的大小关系也可以判断直线与圆的三种位置关系。学生观察图形,积极思考,归纳总结,获得直线与圆的位置关系的两种判断方法2、学生能否理解“互逆”的关系。如有需要,教师应在课中或课后加以解释。