24.如图14,矩形ABCD中,AB=6cm,AD=3cm,点E在边DC上,且DE=4cm.动点P从点A开始沿着A→B→C→E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积为S(cm2),求S与t的函数关系式.24.解:在Rt△ADE中,.5432222DEADAE…………………………1分当0<t≤3时,如图1.……………………………………………………………………2分过点Q作QM⊥AB于M,连接QP.∵AB∥CD,∴∠QAM=∠DEA,又∵∠AMQ=∠D=90°,∴△AQM∽△EAD.∴AEAQADQM,∴tAEAQADQM53.……………………………………………………3分.5353221212tttQMAPS…………………………………………………………4分当3<t≤29时,如图2.……………………………………………………………………5分方法1:在Rt△ADE中,.5432222DEADAE过点Q作QM⊥AB于M,QN⊥BC于N,连接QB.∵AB∥CD,∴∠QAM=∠DEA,又∵∠AMQ=∠ADE=90°,∴△AQM∽△EAD.∴AEAQADQM,AEAQDEAM,∴tAEAQADQM53.………………………………………………………………………6分tAEAQDEAM54,∴QN=tAMBM5466.…………………………………7分∴QABS,595362121ttQMABQBPS.1854254)546)(62(21212ttttQNBP∴QBPQABSSSt59+(18542542tt).18551542tt……………………8分方法2:过点Q作QM⊥AB于M,QN⊥BC于N,连接QB.PQEDCBA图14∵AB∥BC,∴∠QAM=∠DEA,又∵∠AMQ=∠ADE=90°,∴△AQM∽△EAD.∴AEAQADQM,AEAQDEAM,∴tAEAQADQM53.………………………………………………………………………6分tAEAQDEAM54,∴QN=tAMBM5466.…………………………………7分∴.256535421212tttQMAMSAMQ.185512526)546)(5362(21)(212tttttBMQMBPSBPQM梯∴BPQMAMQSSS梯2256t+(1855125262tt).18551542tt……………8分当29<t≤5时.方法1:过点Q作QH⊥CD于H.如图3.由题意得QH∥AD,∴△EHQ∽△EDA,∴,AEQEADQH∴).5(53tAEQEADQH…………………………………………………………………10分∴,123)62(21)(21BCABECSABCE梯,233106353)5(53)211(21212ttttQHEPSEQP∴EQPABCESSS梯122331063532tt.291063532tt………………………11分方法2:连接QB、QC,过点Q分别作QH⊥DC于H,QM⊥AB于M,QN⊥BC于N.如图4.由题意得QH∥AD,∴△EHQ∽△EDA,∴,AEQEADQH∴).5(53tAEQEADQH…………………………………………………………………10分∴.595362121ttQNABSQAB.569)546(32121ttQNBCSQBC.227105753)533)(92(21212ttttQHPCSQCP∴QCPQBCQABSSSSt59)569(t)227105753(2tt.291063532tt………………………………11分