圆周角的优秀教案根据数学课程标准中关于“圆周角”的教学要求,和对教材、学生的分析,结合我班学生已有的经验和知识基础,我确定了本节课的教学目标:⑴了解圆周角与圆心角之间的关系,理解圆周角的概念,掌握圆周角定理,能熟练运用圆周角定理进行有关证明和计算;⑵经历观察、实验、比较、猜想、证明等探索圆周角定理的过程,体会转化、分类讨论的数学思想方法以及从特殊到一般的认识规律;⑶在合作交流活动中,享受自主探究发现知识的乐趣,在几何图形的运动变化中,感受变化美、动态美,培养学生勇于探索和勤于思考的精神。2.教学过程的设计⑴创设情境,导入新课我首先从学生已掌握的旧知识出发,提出问题:什么叫圆心角?图1中∠AOB的特点是什么?有哪些相关的性质?学生思考后回答,师生共同纠正评价,进一步明确:顶点在圆心的角叫圆心角;在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。然后我用多媒体展示在北京海洋馆里人们通过圆弧形玻璃窗AB观看窗内神奇的海底世界的图片,如图2,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,同学丙和丁分别站在其他靠墙的位置D和E。在学生理解题意后,我向学生提问:你知道哪位同学的观赏角度最好吗?学生结合图形大胆猜想,猜想的结果是否正确,我并不给出明确的答案,而是设置一个悬念,并向学生说明:通过今天的学习,我们就可以解决这个问题,从而引入本节课的课题—圆周角。⑵合作探究,学习新知我首先引导学生认识圆周角。提出问题1:在图2中,∠AOB的顶点在圆心,∠AOB是圆心角;∠ACB、∠ADB和∠AEB这三个角有什么共同的特征吗?学生独立思考,回答问题后,师生共同纠正评价,明确共同的特征是:①角的顶点在圆周上;②角的两边都和圆相交。提出问题2:你能尝试叙述一下“圆周角”的概念吗?学生通过类比回答问题,师生修改、补充、达成共识得到圆周角的概念:顶点在圆上,两边都和圆相交的角叫做圆周角。提出问题3:圆周角与圆心角的概念有什么区别、联系吗?学生独立思考进行回答,其他学生补充完善后,我利用多媒体课件指出圆周角与圆心角概念之间的区别、联系:图形角的顶点角的两边圆心角∠AOB在圆心两边和圆相交(不必强调)圆周角∠ACB在圆上两边和圆相交(必须强调)提出问题4:判断下列各图形中的角是不是圆周角,并说明理由。学生独立思考后回答问题,图(3)(6)(8)中的角是圆周角。我及时给予鼓励评价,并由学生总结强调:圆周角的概念中两个特征缺一不可:①顶点在圆上;②两边和圆相交。我顺势引导学生观察图(3)(6)(8)中三个圆周角的位置特征,继续提问:问题5:圆心与圆周角之间存在几种不同的位置关系?学生先独立思考,再与同桌交流,我借助几何画板,从运动的观点引导学生观察归纳,师生达成共识后明确指出:圆心与圆周角之间存在三种位置关系。圆心在角的一边上;圆心在角的内部;圆心在角的外部。为圆周角定理的分类证明做好铺垫,渗透分类讨论思想。然后我引导学生探究圆周角的性质观察实验,测量比较我请同学们分成小组,先在学案纸上任意画同一条弧AB所对的圆心角和圆周角,再用量角器分别度量出这两个角的大小,填入表格中,并比较它们在度数之间有怎样的关系?参与学生小组活动,对于发现规律的学习小组,给予及时的表扬,并鼓励他们用准确简练的语言,归纳概括提出猜想。对于没有发现规律的小组,我引导学生根据圆心与圆周角不同的位置关系,正确画出图形,渗透分类讨论思想,并测量比较圆心角和圆周角度数之间的关系帮助他们发现规律。提出猜想,直观验证在学生分小组进行观察实验、度量比较、充分讨论的基础上,我请小组代表阐述本组合作交流、探究发现的规律,提出猜想:一条弧所对的圆周角等于它所对的圆心角的一半。我适时地利用几何画板进行直观演示,验证学生提出的猜想。拖动点C,观察到弧AB所对的圆周角虽然有无数个,但度量∠AOB和∠ACB的度数后,发现:圆周角∠ACB都等于它所对的圆心角∠AOB的一半。拖动点A,改变弧AB的大小,观察发现上述规律不变,即∠ACB=∠AOB。推理证明,归纳性质在几何画板直观验证的基础上,我让学生分小...