2015年普通高等学校招生全国统一考试(湖南卷)(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知=1+i(i为虚数单位),则复数z=()A.1+iB.1-iC.-1+iD.-1-i2.设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.若变量x,y满足约束条件则z=3x-y的最小值为()A.-7B.-1C.1D.25.设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.已知的展开式中含x的项的系数为30,则a=()A.B.-C.6D.-67.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ0,b>0,且a+b=+.证明:①a+b≥2;②a2+a<2与b2+b<2不可能同时成立.17.(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.(1)证明:B-A=;(2)求sinA+sinC的取值范围.18.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.19.(本小题满分13分)如图,已知四棱台ABCDA1B1C1D1的上、下底面分别是边长为3和6的正方形,A1A=6,且A1A⊥底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二角...