专题01巧用12个解题技巧技法一特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.例1(2017·山东卷)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b)B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b)<a+<▲方法点睛1.特例法具有简化运算和推理的功效,比较适用于题目中含字母或具有一般性结论的选择题.2.特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理.第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.【变式训练】1.如图,在棱柱的侧棱A1A和B1B上各有一动点P,Q满足A1P=BQ,过P,Q,C三点的截面把棱柱分成两部分,则其体积之比为()A.3∶1B.2∶1C.4∶1D.∶12.函数f(x)=cosx·log2|x|的图象大致为()3.如图,点P为椭圆+=1上第一象限内的任意一点,过椭圆的右顶点A、上顶点B分别作y轴、x轴的平行线,它们相交于点C,过点P引BC,AC的平行线,分别交AC于点N,交BC于点M,交AB于D、E两点,记矩形PMCN的面积为S1,三角形PDE的面积为S2,则S1∶S2=()A.1B.2C.D.技法二图解法(数形结合法)对于一些含有几何背景的题目,若能“数中思形”“以形助数”,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果.Venn图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.例2(1)设向量a,b,c满足|a|=|b|=1,a·b=,(a-c)·(b-c)=0,则|c|的最大值等于()A.B.C.D.1【答案】A【解析】(1)解法一(几何法):如图,a=,b=,c=.由题意有∠AOB=,点C在圆M上.当点C达到点D时,|c|最大,|c|max=||+||=sin+cos=.选A.当点C达到点D时,|c|最大,|c|max=||+||=sin+cos=.选A.(2)【2018山西省太原市实验中学模拟】函数是定义域为的偶函数,当时,若关于的方程有且仅有8个不同实数根,则实数的取值范围是________【答案】要使关于x的方程,有且仅有8个不同实数根,设t=f(x),则t2+at+=0的两根均在(-1,--故答案为▲方法点睛数形结合是依靠图形的直观性进行分析的,用这种方法解题比直接计算求解更能抓住问题的实质,并能迅速地得到结果.不过运用图解法解题一定要对有关的函数图象、几何图形较熟悉,否则错误的图象反而导致错误的选择.【变式训练】1.已知函数f(x)=和函数g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数为()A.1B.2C.3D.42.设函数f(x)=其中[x]表示不超过x的最大整数,如[-1.1]=-2,[π]=3等.若方程f(x)=k(x+1)(k>0)恰有三个不相等的实根,则实数k的取值范围是()A.B.C.D.技法三估算法估算法就是不需要计算出代数式的准确数值,通过估算其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要详细的过程,因此可以通过猜测、合情推理、估算而获得,从而减少运算量.例3(1)(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≥”的概率,p2为事件“|x-y|≤”的概率,p3为事件“xy≤”的概率,则()A.p1