3.1.3概率的基本性质(建议用时:45分钟)[学业达标]一、选择题1.若A,B是互斥事件,则()A.P(A∪B)<1B.P(A∪B)=1C.P(A∪B)>1D.P(A∪B)≤1【解析】 A,B互斥,∴P(A∪B)=P(A)+P(B)≤1.(当A,B对立时,P(A∪B)=1)【答案】D2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是()A.A⊆DB.B∩D=∅C.A∪C=DD.A∪B=B∪D【解析】“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中∴A∪B≠B∪D.【答案】D3.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③【解析】从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.【答案】C4.某城市2016年的空气质量状况如下表所示:污染指数T3060100110130140概率P其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2016年空气质量达到良或优的概率为()A.B.C.D.【解析】所求概率为++=.故选A.【答案】A5.对一批产品的长度(单位:毫米)进行抽样检测,如图312为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()图312A.0.09B.0.20C.0.25D.0.45【解析】由题图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.【答案】D二、填空题6.在掷骰子的游戏中,向上的数字为5或6的概率为________.【解析】记事件A为“向上的数字为5”,事件B为“向上的数字为6”,则A与B互斥.所以P(A∪B)=P(A)+P(B)=×2=.【答案】7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________.【解析】连续射击两次有以下四种情况:第一次中第二次不中,第一次不中第二次中,两次都中和两次都不中.故“至少一次中靶”的互斥事件为“两次都不中靶”.【答案】“两次都不中靶”8.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是________.【解析】记既没有5点也没有6点的事件为A,则P(A)=,5点或6点至少出现一个的事件为B.因为A∩B=∅,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故5点或6点至少出现一个的概率为.【答案】三、解答题9.掷一枚质地均匀的骰子,向上的一面出现1点,2点,3点,4点,5点,6点的概率均为,记事件A为“出现奇数”,事件B为“向上的数不超过3”,求P(A∪B).【解】记事件“出现1点”,“出现2点”,“出现3点”,“出现5点”分别为A1,A2,A3,A4.这四个事件彼此互斥,故P(A∪B)=P(A1)+P(A2)+P(A3)+P(A4)=+++=.[能力提升]1.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球【解析】A项中,若取出的3个球是3个红球,则这两个事件同时发生,故它们不是互斥事件,所以A项不符合题意;B项中,这两个事件不能同时发生,且必有一个发生,则它们是互斥事件且是对立事件,所以B项不符合题意;C项中,若取出的3个球是1个红球2个白球时,它们同时发生,则它们不是互斥事件,所以C项不符合题意;D项中,这两个事件不能同时发生,是互斥事件,若取出的3个球都是红球,则它们都没有发生,故它们不是对立事件,所以D项符合题意.【答案】D2.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率...