电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第1章 立体几何初步 5.1 平行关系的判定课时作业 北师大版必修2-北师大版高一必修2数学试题VIP免费

高中数学 第1章 立体几何初步 5.1 平行关系的判定课时作业 北师大版必修2-北师大版高一必修2数学试题_第1页
1/4
高中数学 第1章 立体几何初步 5.1 平行关系的判定课时作业 北师大版必修2-北师大版高一必修2数学试题_第2页
2/4
高中数学 第1章 立体几何初步 5.1 平行关系的判定课时作业 北师大版必修2-北师大版高一必修2数学试题_第3页
3/4
5.1平行关系的判定时间:45分钟满分:80分班级________姓名________分数________一、选择题(每小题5分,共5×6=30分)1.长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个答案:C解析:上、下底面和面CC1D1D与EF平行,故3个.2.下列命题正确的是()A.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B.平行于同一个平面的两条直线平行C.与两个相交平面的交线平行的直线,必平行于这两个平面D.平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行答案:D解析:对于A,平面内还存在直线与这条直线异面,错误;对于B,这两条直线还可以相交、异面,错误;对于C,这条直线还可能在其中一个平面内,错误.故选D.3.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1E与平面FHE1D.平面E1HG1与平面EH1G答案:A解析:根据面面平行的判定定理,可知A正确.4.已知A,B是直线l外的两点,则过A,B且和l平行的平面有()A.0个B.1个C.无数个D.以上都有可能答案:D解析:若直线AB与l相交,则过A,B不存在与l平行的平面;若AB与l异面,则过A,B存在1个与l平行的平面;若AB与l平行,则过A,B存在无数个与l平行的平面,所以选D.5.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,则在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条答案:D解析:在AA1上取一点G,使得AG=AA1,连接EG,DG,可证得EG∥D1F,所以E,G,D1,F四点共面,所以在平面ADD1A1内,平行于D1G的直线均平行于平面D1EF,这样的直线有无数条.6.如图,在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEB=AFFD=14,H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形答案:B解析:由题意,知EF∥BD,且EF=BD,HG∥BD,且HG=BD,∴EF∥HG,且EF≠HG,∴四边形EFGH是梯形.又EF∥平面BCD,EH与平面ADC不平行,故选B.二、填空题(每小题5分,共5×3=15分)7.如果直线a,b相交,直线a∥平面α,则直线b与平面α的位置关系是________.答案:相交或平行解析:根据线面位置关系的定义,可知直线b与平面α的位置关系是相交或平行.8.在正方体ABCD-A1B1C1D1中,与AC平行,且过正方体三个顶点的截面是________.答案:平面A1C1B和平面A1C1D解析:如图所示截面一定过A1,C1两点,又截面过三个顶点,故所求截面为A1C1B和平面A1C1D.9.已知正三棱柱ABC-A1B1C1中,G是A1C1的中点,过点G的截面与侧面ABB1A1平行,若侧面ABB1A1是边长为4的正方形,则截面周长为________.答案:12解析:如图,取B1C1的中点M,BC的中点N,AC的中点H,连接GM,MN,HN,GH,则GM∥HN∥AB,MN∥GH∥AA1,所以有GM∥平面ABB1A1,MN∥平面ABB1A1.又GM∩MN=M,所以平面GMNH∥平面ABB1A1,即平面GMNH为过点G且与平面ABB1A1平行的截面.易得此截面的周长为4+4+2+2=12.三、解答题(共35分,11+12+12)10.如图,在四棱锥O-ABCD中,底面ABCD为平行四边形,M为OA的中点,N为BC的中点,求证:MN∥平面OCD.证明:如图,取OD的中点E,连接ME,CE.∵M为OA的中点,N为BC的中点,∴ME綊AD綊NC,∴四边形MNCE为平行四边形,∴MN∥EC.又MN⃘平面OCD,EC平面OCD,∴MN∥平面OCD.11.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点.求证:平面AFH∥平面PCE.证明:因为F,H分别为CD,PD的中点,所以FH∥PC.又FH⃘平面PCE,PC平面PCE,所以FH∥平面PCE.又E为AB的中点,所以AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE.又AF⃘平面PCE,CE平面PCE,所以AF∥平面PCE.又FH∩AF=F,所以平面AFH∥平面PCE.12.如图所示,在三棱柱ABC-A1B1C1中,点D1是线段A1C1上的一点,当为何值时,BC1∥平面AB1D1?解:当=1时,BC1∥平面AB1D1.证明如下:如图,连接A1B交AB1于点O,连接OD1.由棱柱的定义,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又OD1平面AB1D1,BC1平面AB1D1,所以BC1∥平面AB1D1.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第1章 立体几何初步 5.1 平行关系的判定课时作业 北师大版必修2-北师大版高一必修2数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部