4.1空间图形基本关系的认识时间:45分钟满分:80分班级________姓名________分数________一、选择题(每小题5分,共5×6=30分)1.下列说法错误的是()A.若一条直线与平面有无数个公共点,则这条直线在平面内B.若两个平面没有公共点,则两个平面互相平行C.直线与平面的位置关系有两种:相交、平行D.如果一条直线与平面只有一个公共点,那么这条直线和平面相交答案:C2.如果a⊂α,b⊂α,l∩a=A,l∩b=B,那么下列关系成立的是()A.l⊂αB.l∉αC.l∩α=AD.l∩α=B答案:A解析:∵l∩a=A又a⊂α,∴A∈l且A∈α.同理B∈l且B∈α.∴l⊂α.3.如果两条直线a和b没有公共点,那么a与b的位置关系是()A.共面B.平行C.异面D.平行或异面答案:D解析:由两条直线的位置关系,可知答案为D.4.下面空间图形画法错误的是()ABCD答案:D解析:画立体图时,被平面遮住的部分画成虚线或不画.5.已知a、b是异面直线,直线c∥直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案:C解析:若b∥c,∵a∥c,∴a∥b,这与a、b异面矛盾,其余情况均有可能.6.一条直线与两条异面直线中的一条相交,则它与另一条的位置关系是()A.异面B.平行C.相交D.可能相交、平行、也可能异面答案:D解析:一条直线与两条异面直线中的一条相交,它与另一条的位置关系有三种:平行、相交、异面,如下图所示.二、填空题(每小题5分,共5×3=15分)7.点A在直线l上,用符号表示为______;直线AB在平面β内,用符号可表示为______;平面α与平面β相交于直线l可表示为______.答案:A∈lAB⊂βα∩β=l8.设平面α与平面β相交于直线l,直线aα,直线bβ,a∩b=M,则点M与l的位置关系为________.答案:M∈l解析:因为a∩b=M,aα,bβ,所以M∈α,M∈β.又平面α与平面β相交于直线l,所以点M在直线l上,即M∈l.9.如图,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).答案:②解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,则GM∥HN,因此GH与MN共面.三、解答题(共35分,11+12+12)10.按照给出的要求,完成下面两个相交平面的作图,如图①②③④⑤⑥中的线段AB,分别是两个平面的交线.解:答案如图所示,11.如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解:(1)不是异面直线,理由:连结MN,A1C1、AC,如图,因为M、N分别是A1B1、B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A、M、N、C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.12.如图,已知P∉平面ABC,PA≠PB,CM是AB上的中线,PN⊥AB与N,求证:CM和PN是异面直线.解:证法1:假设CM和PN共面,则有下列两种情况:(1)若M、N重合,可得AN=BN,∴PN是线段AB的中垂线,∴PA=PB,与题设PA≠PB矛盾.(2)若M、N不重合,CM和PN共面,即PC与MN共面,可得P∈平面ABC,与题设P∉平面ABC矛盾.所以CM和PN是异面直线.证法2:∵CM是AB上的中线,∴CM⊂平面ABC.又∵PN⊥AB于N,∴N∈平面ABC.∵PA≠PB,∴AN≠BN.∴N与M不重合,即N∉CM.又∵P∉平面ABC,∴CM和PN是异面直线.