第13部分:概率一、选择题:1.(2010年高考北京卷文科3)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是(A)(B)(C)(D)2.(2010年高考江西卷文科9)有位同学参加某项选拔测试,每位同学能通过测试的概率都是,假设每位同学能否通过测试是相互独立的,则至少每一位同学能通过测试的概率为A.B.C.D.【答案】D【命题意图】主要考察对立事件的概率【解析】每位同学不能通过的概率为,所有同学都不能通过的概率为,至少有一位同学能通过的概率为。3.(2010年高考安徽卷文科10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(A)418(A)518(A)618【答案】C【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.二、填空题:1(2010年高考浙江卷文科17)在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为。1解析:由题意知,G点共有16种取法,而只有E为P、M中一点,F为Q、N中一点时,落在平行四边形内,故符合要求的G的只有4个,因此概率为,本题主要考察了平面向量与古典概型的综合运用,属中档题。2.(2010年高考上海卷文科10)从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为(结果用最简分数表示)。解析:考查等可能事件概率“抽出的2张均为红桃”的概率为3.(2010年高考辽宁卷文科13)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为。解析:填题中三张卡片随机地排成一行,共有三种情况:,概率为:4.(2010年高考宁夏卷文科14)设函数为区间上的图像是连续不断的一条曲线,且恒有,可以用随机模拟方法计算由曲线及直线,,所围成部分的面积,先产生两组每组个,区间上的均匀随机数和,由此得到V个点。再数出其中满足的点数,那么由随机模拟方法可得S的近似值为___________【答案】解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知.5.(2010年高考重庆卷文科14)加工某一零件需经过三道工序,设第一、二、三道工序的次品2率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________.【答案】【解析】加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得加工出来的零件的次品率.6.(2010年高考湖北卷文科13)一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_______(用数字作答)。【答案】0.9744【解析】分情况讨论:若共有3人被治愈,则;若共有4人被治愈,则,故至少有3人被治愈概率.7.(2010年高考湖南卷文科11)在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为。【答案】【命题意图】本题考察几何概率,属容易题。三、解答题:1.(2010年高考山东卷文科19)(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.【命题意图】本小题主要考察古典概念、对立事件的概率计算,考察学生分析问题、解决问题的能力。【解析】(I)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个。从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个。因此所求事件的概率为1/3。(II)先从袋中随机取一个球,记下编号为m,放回后,在从袋中随机取一个球,记下编...