第五章生活中的轴对称5.3.2简单的轴对称图形【教学目标】知识与技能1本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2探索并了解线段垂直平分线的有关性质.3应用线段垂直平分线的性质解决一些实际问题.4尺规作图。过程与方法本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。情感态度与价值观1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。行为与创新通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神,使学生在积极参与探索、交流的数学活动中,激发学生的求知欲,感受与他人合作的重要性。【教学重难点】重点线段垂直平分线的性质及线段的对称轴难点利用线段的垂直平分线的相关性质解决问题【课前准备】教师:课件学生:练习本.【教学过程】复习回顾1.什么是轴对称图形?2.下列图形哪些是轴对称图形?一、创设情景引入学生作品呈现:多彩的脸谱,美丽的蝴蝶、飞机……,一片迷人的景色。出示课题:《简单的轴对称图形(二)》二、应用练习促进深化探索1:探索线段的对称性:线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?按下面的步骤做一做:⑴在纸上画一条线段AB,对折AB使点A,B重合,折痕与AB的交点为O;⑵在折痕上任取一点M,沿MA将纸折叠;⑶把纸张展开,得到折痕MA和MB.问题:⑴MO与AB具有怎样的位置关系?⑵AO与BO相等吗?MA与MB呢?能说明你的理由吗?⑶在折痕上移动M的位置,结果会怎样?结论:⑴线段是轴对称图形,它的对称轴有两条:一条是线段AB本身所在的直线;另一条是CD,它垂直于AB又平分AB,称作AB的垂直平分线.⑵无论M点取在直线的何处,线段MA和MB都重合.⑶线段垂直平分线的概念:垂直且平分一条线段的直线叫这条线段的垂直平分线.⑷线段的垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等.探索2:尺规作图活动内容:如图,已知线段AB,请画出它的垂直平分线.1、多媒体展示历史上用直尺和圆规画出的美妙图形,介绍相关数学史。2、学生首先进行自学,然后请两位同学到背板板演,其余同学在练习本上进行尺规作图。教师适时强调写出规范的己知、求作。完后各小组互相检查,教师再针对存在的问题进行强调纠正,加深学生对作法的理解和掌握。3、各小组讨论:为什么所作的直线就是已知线段的垂直平分线?1如图,点C在直线l上,试过点C画出直线l的垂线.能否利用画线段垂直平分线的方法解决呢?试试看,完成整个作图.2如图,如果点C不在直线l上,试和同学讨论,应采取怎样的步骤,过点C画出直线l的垂线?三、能力再提升1.在△ABC中,BC=10,边BC的垂直平分线分别交AB,BC于点E,D,BE=6,求△BCE的周长.2.如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.3.如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.4.如图,已知点D在AB的垂直平分线上,如果AC=5cm,BC=4cm,那么△BDC的周长是cm。5.(拓展提高)A,B,C三点表示三个工厂,现要建一供水站,使它到这三个工厂的距离相等,请在图中标出供水站的位置P,请给予说明理由。四、归纳小结鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括垂直平分线的特点及性质,本课主要解决了以下两方面的问题:⑴线段是轴对称图形吗?它的对称轴是什么?⑵线段的垂直平分线的性质是什么?如何运用?以及本节知识在实际问题中的应用及切身感受。五、本课作业1.独立完成习题5.4知识技能:第1题、第2题;问题解决第1题、第2题。2.小组...