电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【走向高考】2016届高三数学一轮专题4 高考中的立体几何问题(含解析)北师大版VIP免费

【走向高考】2016届高三数学一轮专题4 高考中的立体几何问题(含解析)北师大版_第1页
1/5
【走向高考】2016届高三数学一轮专题4 高考中的立体几何问题(含解析)北师大版_第2页
2/5
【走向高考】2016届高三数学一轮专题4 高考中的立体几何问题(含解析)北师大版_第3页
3/5
专题四高考中的立体几何问题1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.[解析](1) PA⊥底面ABCD,CE平面ABCD∴CE⊥PA,又 AB⊥AD,CE∥AB.∴CE⊥AD.又 PA∩AD=A,∴CE⊥平面PAD.(2)由(1)可知CE⊥AD.在Rt△ECD中,DE=CD·cos45°=1,CE=CD·sin45°=1.又 AB=CE=1,AB∥CE,所以四边形ABCE为矩形.∴S四边形ABCD=S矩形ABCE+S△CDE=AB·AE+CE·DE=1×2+×1×1=.又PA⊥底面ABCD,PA=1所以V四棱锥p-ABCD=S四边形ABCD×PA=××1=.2.(2015·潍坊模拟)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.[证明](1)在△PAD中,因为E、F分别为AP、AD的中点,所以EF∥PD.又因为EF⃘平面PCD,PD平面PCD.所以直线EF∥平面PCD.(2)连结BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.3.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD、PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.1[解析](1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⃘平面PAD,AD平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且四边形ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD.所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF,又因为CD⊥BE,BE∩EF=E,所以CD⊥平面BEF.所以平面BEF⊥平面PCD.4.如图,在几何体P-ABCD中,四边形ABCD为矩形,PA⊥平面ABCD,AB=PA=2.(1)当AD=2时,求证:平面PBD⊥平面PAC;(2)若PC与AD所成的角为45°,求几何求P-ABCD的体积.[解析](1)证明:当AD=2时,四边形ABCD是正方形,则BD⊥AC. PA⊥平面ABCD,BD平面ABCD,∴PA⊥BD.又 PA∩AC=A,∴BD⊥平面PAC. BD平面PBD,∴平面PBD⊥平面PAC.2(2)解:PC与AD成45°角,AD∥BC,则∠PCB=45°. BC⊥AB,BC⊥PA,AB∩PA=A,∴BC⊥平面PAB,PB平面PAB.∴BC⊥PB.∴∠CPB=90°-45°=45°.∴BC=PB=2.∴几何体P-ABCD的体积为×(2×2)×2=.1.(2014·四川高考)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.[解析](1)因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线,所以AA1⊥平面ABC.因为直线BC平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.(2)取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知,O为AC1的中点.连接MD,OE,则MD,OE分别为△ABC,△ACC1的中位线,所以,MD綊AC,OE綊AC,因此MD綊OE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE⃘平面A1MC,MO平面A1MC.所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.32.如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.[解析](1) DD1⊥平面ABCD,BD平面ABCD∴DD1⊥BD,又 AB=2AD且∠BAD=60°∴由余弦定理得BD2=AB2+AD2-2AB·ADcos∠BAD即BD=AD,∴AD2+BD2=AB2,∴BD⊥AD又 AD∩DD1=D∴BD⊥平面ADD1A1,又 AA1平面ADD1A1,∴BD⊥AA1(2)连接AC,交BD于M,连接A1M,A1C1, 底面ABCD是平行四边形,∴AM=C...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【走向高考】2016届高三数学一轮专题4 高考中的立体几何问题(含解析)北师大版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部