电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

空间几何体的表面积和体积周VIP免费

空间几何体的表面积和体积周_第1页
1/77
空间几何体的表面积和体积周_第2页
2/77
空间几何体的表面积和体积周_第3页
3/77
1.3简单几何体的表面积和体积1、表面积:几何体表面的面积2、体积:几何体所占空间的大小。24/12/20上午03:02云在漫步24/12/20上午03:02云在漫步表面积、全面积和侧面积•表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)•全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和•侧面积指立体图形的各个侧面的面积之和(除去底面)①直棱柱:设棱柱的高为h,底面多边形的周长为c,则S直棱柱侧=.(类比矩形的面积)②圆柱:如果圆柱的底面半径为r,母线长为l,那么S圆柱侧=.(类比矩形的面积)ch2πrl知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?chhcbaS)=(直棱拄侧habcabchh棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图底侧表面积SSS2思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?rlr2长=宽=llSSr2=长方形圆柱侧长方形长方形圆柱的侧面展开图是矩形2222()SrrlrrlOOrl2r底侧表面积SSS2①正棱锥:设正棱锥底面正多边形的周长为c,斜高为h′,则S正棱锥侧=.(类比三角形的面积)②圆锥:如果圆锥的底面半径为r,母线长为l,那么S圆锥侧=.(类比三角形的面积)1∕2ch′πrl(2)锥体的侧面积把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?h'h''21chS=正棱锥侧棱锥的侧面展开图是什么?如何计算它的表面积?/h/h正三棱锥的侧面展开图h'h'侧面展开正五棱锥的侧面展开图底侧表面积SSS思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?rl180lnl=扇lR=扇rllllnSS扇扇圆锥侧==213602扇形扇形圆锥的侧面展开图是扇形r2lOr2()Srrlrrl①正棱台:设正n棱台的上底面、下底面周长分别为c′、c,斜高为h′,则正n棱台的侧面积公式:S正棱台侧=.②圆台:如果圆台的上、下底面半径分别为r′、r,母线长为l,则S圆台侧=.1∕2(c+c′)h′πl(r′+r)(3)台体的侧面积注:表面积=侧面积+底面积.把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)h'h'')'21hccS(=正棱台侧侧面展开h'h'正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?下底上底侧表面积SSSS参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.r2lOrO’'r'2r圆台的侧面展开图是扇环2'2'()Srrrlrl思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?1r2rl扇环扇环lrrSS)21(==扇环圆台侧r2lOrO’'r'2r2'2'()Srrrlrlx'rxrxl''rxrxrlS侧''()()rlxrxrlrxrx'()rlrllOrO’'r圆柱、圆锥、圆台三者的表面积公式之间有什么关系?lOOrr’=r上底扩大lOrr’=0上底缩小2222()Srrlrrl2()Srrlrrl2'2'()Srrrlrl棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h'h'它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E例3:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角32分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留π)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式')'cc21hS+(=正棱台C’=0'21chS=三棱锥C’=CchchS'=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

空间几何体的表面积和体积周

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部