例23个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务,每个小组原先每天生产多少件产品?想一想想一想解:设每个小组原先每天生产x件产品.根据题中前后两个条件,得3×10x<500①3×10(x+1)>500②{分析:“不能完成任务”的意思是:按原先的生产速度,10天的产品数量_500“提前完成任务”的意思是:小于提高生产速度后,10天的产品数量____500大于因此,不等式组的解集为15—15—23322332根据题意,x的值应是整数,所以x=16答:每个小组原先每天生产16件产品某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴。该地某农户在改善的10个1亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如表2所示(收益=毛利润-成本+政府津贴):(1)根据以上信息,该农户可以怎样安排养殖?(2)应怎样安排养殖,可获得最大收益?养殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)甲鱼1.52.50.2黄鳝11.80.1(1)分析:解答此题的关键是明确等量关系与不等关系,根据等量关系设未知数,根据不等关系列不等式.等量关系:甲鱼的亩数+黄鳝的亩数=10亩不等关系:⑴甲鱼的成本+黄鳝的成本≤14万元⑵甲鱼的收益+黄鳝的收益≥10.8万元解:设养甲鱼的亩数为x亩,则养黄鳝的亩数为(10-x)亩,由表格可以看出:养甲鱼的收益为2.5-1.5+0.2=1.2(万元/亩)养黄鳝的收益为1.8-1+0.1=0.9(万元/亩)根据题意得:1.5x+10-x≤14,1.2x+0.9(10-x)≥10.8解得6≤x≤8所以该农户可以这样安排养殖:养甲鱼6亩,黄鳝4亩;或养甲鱼7亩,黄鳝3亩;或养甲鱼8亩,黄鳝2亩{方法1:(2)由(1)中分析可知,每亩水池养甲鱼的收益大于养黄鳝的收益,所以要想获得最大收益应在可能范围内使养甲鱼的亩数最多,即养甲鱼8亩,黄鳝2亩.(2)应怎样安排养殖,可获得最大收益?方法2:6×1.2+4×0.9=10.87×1.2+2×0.9=11.18×1.2+2×0.9=11.4一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?解:设张力平均每天读x页7(x+3)>98①7x<98②解不等式①得x>11解不等式②得x<14因此,不等式组的解集为11