电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

课后作业.1.1《同底数幂的乘法》教案VIP免费

课后作业.1.1《同底数幂的乘法》教案_第1页
1/4
课后作业.1.1《同底数幂的乘法》教案_第2页
2/4
课后作业.1.1《同底数幂的乘法》教案_第3页
3/4
《14.1.1同底数幂的乘法》教学设计学情分析:从学生的知识情况来看,一是指数概念早已学过,但由于时间和自身的原因,对指数概念中所含名称:底数、指数、幂的含义并不十分明确;二是再加上以前学过的系数的概念,增加了正确理解法则的困难;三是同底数幂的乘法法则容易与合并同类项混淆,这更给熟练掌握增添了障碍。从学生的能力和情感来看,通过一学期的培养,已由原来的被动式接受学习向主动探究式学习转变,但由于时间和经验的限制,还不够成熟,方法欠灵活。知识与技能:1.理解同底数幂的乘法法则及其推导过程;2.能熟练运用同底数幂的乘法法则进行计算。过程与方法:在进一步体会幂的意义时,发展推理能力和有条理的表达能力;学习同底幂乘法的运算性质,提高解决问题的能力.情感价值观:1.在发展推理能力和有条理的表达能力的同时,体会科学的思想方法,培养学习数学的兴趣,树立学习数学的信心.2.通过由特殊到一般的说理、验证培养学生一定的说理能力和归纳表达能力,使学生初步理解特殊----一般------特殊的认知规律。教学重点:正确理解同底数幂的乘法法则。教学难点:正确理解和运用同底数幂的乘法法则。教学方法:1.教法:先学后教2.学法:本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,可以进行了以下学法指导:观察分析、探究归纳、练习巩固。教学过程(一)提出问题,创设情境复习an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.出示课题提出问题:问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间所以计算机工作103秒可进行的运算次数为:1012×103.[师]1012×103如何计算呢?[生]根据乘方的意义可知1012×103=×(10×10×10)==1015.[师]很好,通过观察大家可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.(二)发现归纳探究新知1.做一做计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m·5n=×=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述).[生]我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘.(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议am·an等于什么(m、n都是正整数)?为什么?[师生共析]am·an表示同底数幂的乘法.根据幂的意义可得:am·an=·==am+n于是有am·an=am+n(m、n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]am表示n个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得am·an=am+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解[例1]计算:(1)x2·x5(2)a·a6(3)2×24×23(4)xm·x3m+1[例2]计算am·an·ap后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1·a6=a1+6=a7.(3)解:2×24×23=21+4·23=25·23=25+3=28.(4)解:xm...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

课后作业.1.1《同底数幂的乘法》教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部