电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

考点25数列求和及综合应用VIP免费

考点25数列求和及综合应用_第1页
1/17
考点25数列求和及综合应用_第2页
2/17
考点25数列求和及综合应用_第3页
3/17
圆学子梦想铸金字品牌温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。考点25数列求和及综合应用一、选择题1.(2013·新课标Ⅰ高考理科·T12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,…若b1>c1,b1+c1=2a1,an+1=an,bn+1=,cn+1=,则()A、{Sn}为递减数列B、{Sn}为递增数列C、{S2n-1}为递增数列,{S2n}为递减数列D、{S2n-1}为递减数列,{S2n}为递增数列【解析】选B.因为,,,所以,,注意到,所以.于是中,边长为定值,另两边的长度之和为为定值.因为,所以,当时,有,即,于是的边的高随增大而增大,于是其面积为递增数列.二、填空题2.(2013·新课标Ⅰ高考理科·T14)若数列的前项和,则的通项1圆学子梦想铸金字品牌公式是_________【解题指南】先利用S1=a1求出a1的值,再利用Sn-Sn-1=an求出通项公式an.【解析】由,解得,又,所以,得,所以数列是首项为1,公比为的等比数列.故数列的通项公式【答案】3.(2013·湖南高考理科·T15)设为数列的前n项和,则(1)_____;(2)___________.【解题指南】(1)令,代入即可得到答案.(2)通过整理可发现当当为偶数时有,于是代入第(2)问的展开式即可得到答案.【解析】(1)因为,所以,①,,即②,把②代入①得.(2)因为当时,,整理得,所以,当为偶数时,,当为奇数时,,所以,2圆学子梦想铸金字品牌所以,所以当为偶数时,,所以.【答案】(1)(2)4.(2013·重庆高考理科·T12)已知是等差数列,,公差,为其前项和,若、、成等比数列,则【解题指南】先根据、、成等比数列求出数列的公差,然后根据公式求出.【解析】因为、、成等1比数列,所以,化简得因为,所以,故【答案】三、解答题5.(2013·大纲版全国卷高考理科·T22)已知函数(I)若;(II)设数列【解析】(I),3圆学子梦想铸金字品牌令,即,解得或若,则时,,所以.若,则时,()0¢0,定义函数f(x)=2|x+c+4|-|x+c|.数列a1,a2,a3,…,满足an+1=f(an),n∈N*.5圆学子梦想铸金字品牌(1)若a1=-c-2,求a2及a3.(2)求证:对任意n∈N*,an+1-an≥c.(3)是否存在a1,使得a1,a2,…,an,…,成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【解析】(1)a2=2,a3=c+10.(2)f(x)=当an≥-c时,an+1-an=c+8>c.当-c-4≤an<-c时,an+1-an=2an+3c+8≥2(-c-4)+3c+8=c;当an<-c-4时,an+1-an=-2an-c-8>-2(-c-4)-c-8=c;所以,对任意n∈N*,an+1-an≥c.(3)由(2),结合c>0,得an+1>an,即{an}为无穷递增数列,又{an}为等差数列,所以存在正数M,当n>M时,an>-c,从而an+1=f(an)=an+c+8,由于{an}为等差数列,因此其公差d=c+8.①若a1<-c-4,则a2=f(a1)=-a1-c-8,又a2=a1+d=a1+c+8,故-a1-c-8=a1+c+8,即a1=-c-8,从而a2=0,当n≥2时,由于{an}为递增数列,故an≥...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

考点25数列求和及综合应用

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部