实验中学陈梅芳怎么才能滚好铁环?教学目标教学目标教学目标教学目标【知识与能力】•经历探索直线和圆的位置关系的过程.•理解直线和圆的位置关系,探索圆的切线性质.【过程与方法】【情感态度与价值观】•通过观察,比较和动手操作,感受到数学活动充满想象和探索,感受证明的必要性、严谨性及数学结论的确定性.教学重难点教学重难点教学重难点教学重难点•直线和圆的位置关系的性质和判定.•用对称变换及反证法研究切线的性质..Ol.Ol.Ol.A.BA在太阳升起过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗?观察a(地平线)lll观察平面图,由此你能得出直线和圆的位置关系吗?.Ol.O叫做直线和圆相离.直线和圆没有公共点,l直线和圆有唯一的公共点,叫做直线和圆相切.唯一的公共点叫切点..Ol直线和圆有两个公共点,叫做直线和圆相交.这时的直线叫做圆的割线.1.直线和圆的位置关系.A.B切点割线————用公共点的个数来区分切线这时的直线叫切线,A快速判断下列各图中直线与圆的位置关系..Ol.O1l.O2.Ol..Ol抢抢答答除了用公共点的个数来区分直线与圆的位置关系外,能否像点和圆的位置关系一样用数量关系的方法来判断直线和圆的位置关系?2.直线和圆的位置关系——数量特征rd直线l和⊙O相交Odr直线l和⊙O相离dr直线l和⊙O相切OOllldrd:弦心距r:半径·A1.根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线.O小练习小练习2.圆的直径是13cm,如果直线与圆心的距离分别是(1)4.5cm;(2)6.5cm;(3)8cm,那么直线与圆分别是什么位置关系?有几个公共点?(3)圆心距d=8cm>r=6.5cm直线与圆相离,有两个公共点;有一个公共点;没有公共点.AB·6.5cmd=4.5cmOM(2)圆心距d=6.5cm=r=6.5cm直线与圆相切,·NO6.5cmd=6.5cm解(1)圆心距d=4.5cm<r=6.5cm直线与圆相交,D·O6.5cmd=8cm判定直线与圆的位置关系的方法有____种:(1)根据定义,由__________________的个数来判断;(2)根据性质,由_______________________的关系来判断.(在实际应用中,常采用第二种方法判定)两直线与圆的公共点圆心到直线的距离与半径知识要点知识要点活动一:小组合作填表:直线与圆的位置关系直线与圆的位置关系相交相切相离公共点个数公共点名称直线名称图形圆心到直线距离d与半径r的关系dr2交点割线1切点切线0无无在⊙在⊙OO中中,,经过半径经过半径OAOA的的外端点外端点AA作直线作直线L⊥OA,L⊥OA,则圆心则圆心OO到直线到直线LL的距离的距离是多少是多少?______,?______,直线直线LL和和⊙⊙OO有什么位置关系有什么位置关系??_________._________.思考思考::..OOAAOAOA相切相切LL经过半径的外端并且垂直于这条半径的直线是经过半径的外端并且垂直于这条半径的直线是圆的切线圆的切线..几何应用几何应用:: OALL⊥∴OALL⊥∴是⊙是⊙OO的切线的切线知识要点知识要点切线的判定定理经过半径的外端,并且垂直于这条半径的直线是圆的切线..注意圆的切线有无数条.已知⊙O上有一点A,过A作出⊙O的切线.作法:(1)连接OA.(2)过点A作OA的垂线l.l即为所求的切线.小练习小练习知识要点知识要点切线的性质定理圆的切线垂直于过切点的半径..证明:假设OA与CD不垂直,过点O作一条半径垂直于CD,垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD与⊙O相交,这与已知条件“直线CD与⊙O相切”矛盾,所以OA与CD垂直.即圆的切线垂直于过切点的半径..CODMA定理证明定理证明.O是是非非1、直线与圆最多有两个公共点。………………()√提升练习提升练习.O是是非非×.C2、若C为⊙O上的一点,则过点C的直线与⊙O相切。…………()是是非非3、若A、B是⊙O外两点,则直线AB与⊙O相离。……………()×.A1.B1.O.A.B.B2.A2是是非非√.C4、若C为⊙O内一点,则过点C的直线与⊙O相交。().O练习(二)填空:1、已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是_____。直线a与⊙O的公共点个数是____。2、已知⊙O的半径是4cm,O到直线a的距离是4cm,...