同底数幂的乘法教案广福中学:唐文(一)创设情景,引入新课1.前面我们学习了数的运算,学习了哪些内容?是怎样学习的(学习路径)?整式运算,我们已学习了什么运算?你能否类比数的运算,猜想我们将要学习的整式哪种运算?2.探究活动:下面有四个整式,从中任选两个构造乘法运算:、、、(1)你能写出哪些算式?(只需列式,不要求计算);(2)试着将你写出的算式分类,你认为整式乘法有哪几种类型?3.小组讨论单项式乘多项式和多项式乘多项式的步骤.【设计意图】1.通过类比数的运算,引出本章学习内容;2.让学生整体感知整式乘法的类型,并体验到整式的乘法运算最后都是化归为幂的基本运算——aman、(am)n和(ab)m,引出课题.(二)交流对话,探究新知1.运用乘方的意义计算(1)103×104=()()==10()(2)a3×a4=()()==a()(3)10m×10n=()()==10()2.通过对以上过程的观察,你能发现什么规律吗?你能用一个式子来表达这个规律吗?你能解释为什么am·an=am+n吗?3.回顾法则的探究过程,我们经历了怎样的过程?4.诵读法则并思考:运用法则的条件是什么?【设计意图】法则的探究过程,在幂的意义的基础上,开展独立探索和交流对话,不但使学生体会知识的形成过程,而且体会到从特殊到一般的数学归纳方法.然后剖析法则,突出法则应用的条件.(三)应用新知,体验成功1.【辨一辨】下列各式哪些是同底数幂的乘法?【设计意图】辨析法则运用的条件.2.【做一做】计算下列各式,结果用幂的形式表示.第(3)小题变式为x·x5·x9【设计意图】熟练并能灵活运用法则,并将法则推广为三个及三个以上同底数幂乘法.3.【判一判】下面的计算对吗?如果不对,怎样改正?(1)a3·a3=2a3(2)a2·a3=a6(3)a·a6=a6(4)78×(-7)3=711归纳运用法则时应注意的地方.【设计意图】设置4种典型错题,让学生辨析,达到以错纠错目的,帮助学生进一步理解和掌握法则,优化算法,体验转化思想.4.【做一做】计算下列各式,结果用幂的形式表示.【设计意图】帮助学生突破底数互为相反数的幂的乘法运算这一难点,优化底数为数或多项式两种情形算法,进一步体验化归思想,提高思维能力.5.【用一用】光年是长度单位,1光年是指光经过一年所行的距离.光的速度大约是3×105km/s,一颗行星与地球之间的距离为100光年,若取一年大约为3×107秒,则这颗行星与地球之间的距离大约为多少千米?【设计意图】同底数幂的乘法在实际生活中的应用.(四)梳理小结,盘点收获今天我们发现、归纳并运用了一个新的法则1.法则的内容是什么?2.我们是怎么发现和归纳这个法则的?3在运用法则过程中要注意什么?(五)延伸思考,提升层次幂的乘方、积的乘方也是计算单项式乘单项式的基础,它们的法则又是如何呢?请同学们类比同底数幂乘法的研究路径和方法自主探究.(六)推荐作业,巩固拓展1.必做题完成本节练习册2.选做题(1)已知am=2,an=3,求am+n的值(2)已知2x+2=m,用含m的代数式表示2x【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.第1题“必做题”是帮助学生巩固基础知识和基本技能;第2题“选做题”是为学有余力同学设置的,主要是培养学生逆向思维能力和综合运用能力.