3.3.1函数的单调性与导数(4).对数函数的导数:.1)(ln)1(xx.ln1)(log)2(axxa(5).指数函数的导数:.)()1(xxee).1,0(ln)()2(aaaaaxxxxcos)(sin1)((3).三角函数:xxsin)(cos2)((1).常函数:(C)/0,(c为常数);(2).幂函数:(xn)/nxn1一、复习回顾:基本初等函数的导数公式函数y=f(x)在给定区间G上,当x1、x2G∈且x1<x2时yxoabyxoab1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;若f(x)在G上是增函数或减函数,则f(x)在G上具有严格的单调性。G称为单调区间G=(a,b)一、复习引入:(2)作差f(x1)-f(x2)(作商)2.用定义证明函数的单调性的一般步骤:(1)任取x1、x2D∈,且x10,则f(x)是增函数。•如果恒有f′(x)<0,则f(x)是减函数。•特别地:如果恒有f′(x)=0,则f(x)是常函数。例1已知导函数的下列信息:当14,或x<1时,当x=4,或x=1时,)(xf;0)(xf;0)(xf.0)(xf试画出函数的图象的大致形状.)(xf解:当14,或x<1时,可知在此区间内单调递减;,0)(xf)(xf当x=4,或x=1时,.0)(xf综上,函数图象的大致形状如右图所示.)(xfxyO14变式如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(A)(B)(C)(D)htOhtOhtOhtO解:一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.如图,函数在或内的图象“陡峭”,在或内的图象平缓.)(xfy),0(b)0,(a),(b),(a例2判断下列函数的单调性,并求出单调区间:;32)()2(;3)()1(23xxxfxxxf);,0(,sin)()3(xxxxf.12432)()4(23xxxxf解:(1)因为,所以3()3fxxx.0)1(333)(22xxxf因此,函数在上单调递增.xxxf3)(3Rx(2)因为,所以2()23fxxx).1(222)(xxxf当,即时,函数单调递增;0)(xf1x32)(2xxxf当,即时,函数单调递减.0)(xf1x32)(2xxxf解:(3)因为,所以()sin,(0,)fxxxx.01cos)(xxf因此,函数在上单调递减.xxxfsin)(),0(x(4)因为,所以32()23241fxxxx当,即时,函数单调递增;0)(xf21712171xx或)(xf当,即时,函数单调递减.0)(xf2466)(2xxxf21712171x)(xf变式求证:函数在内是减函数.762)(23...