与几何图形最大面积问题问题从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系是h=30t-5t²(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?探究题1用总长为60m的篱笆围城一个矩形场地,矩形面积S随矩形一边长L的变化而变化.(1)你能求出S与L之间的函数关系吗?(2)当L是多少米时,场地的面积S最大?最大值是多少?(2)当L是多少米时,场地的面积S最大?最大值是多少?1.张大爷要围城一个矩形花圃,花圃的一边利用足够长的墙,另一边用总长为32m的篱笆恰好围成.围成的花圃是如图所示的矩形.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(2)当x为何值时,S有最大值?并求出其最大值.AADDBBCC随堂演练随堂演练随堂演练随堂演练解:(1)由题意可知AB=xm,则BC=(32-2x)m∴S=x(32-2x)=-2x²+32x(2)S=-2x²+32x=-2(x²-16x)=-2(x-8)²+128∴当x=8(m)时,S有最大值,最大值为128m²