电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

25.3用频率估计概率12月21日(3)VIP免费

25.3用频率估计概率12月21日(3)_第1页
1/54
25.3用频率估计概率12月21日(3)_第2页
2/54
25.3用频率估计概率12月21日(3)_第3页
3/54
§25.3利用频率估计概率(3)12月21日1.投掷硬币时,国徽朝上的可能性有多大?在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?这是我们下面要讨论的问题。21抛掷次数(n)2048404012000300002400072088正面朝上数(m)106120486019149841201236124频率(m/n)0.5180.5060.5010.49960.50050.5011历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088实验结论:当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数0.5,在它附近摆动.我们知道,当抛掷一枚硬币时,要么出现正面,要么出现反面,它们是随机的.通过上面的试验,我们发现在大量试验中出现正面的可能为0.5,那么出现反面的可能为多少呢?这就是为什么我们在抛一次硬币时,说出现正面的可能为0.5,出现反面的可能为0.5.出现反面的可能也为0.5随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.出现的频率值接近于常数.随机事件及其概率随机事件及其概率某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。nm0.9510.9540.940.970.920.9优等品频率200010005002001005019029544701949245优等品数nmnm抽取球数随机事件及其概率随机事件及其概率事件的概率的定义:A一般地,在大量重复进行同一试验时,事件发生的频率(n为实验的次数,m是事件发生的频数)总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记做.pAPnmAA由定义可知:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此.10AP(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;可以看到事件发生的可能性越大概率就越接近1;反之,事件发生的可能性越小概率就越接近03.对一批衬衫进行抽查,结果如下表:抽取件数n501002005008001000优等品件数m4288176445724901优等品频率m/n0.840.880.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?抽取衬衫2000件,约有优质品几件?4.某射手进行射击,结果如下表所示:射击次数n20100200500800击中靶心次数m1358104255404击中靶心频率m/n(1)这个射手射击一次,击中靶心的概率是多少?0.5(2)这射手射击1600次,击中靶心的次数是。8000.650.580.520.510.5551.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm6.完成下表,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?利用你得到的结论解答下列问题:51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm0.1010.0970.0970.1030.1010.0980.0990.103从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.0.1稳定0.9千克元/22.29.029000100002设每千克柑橘的销价为x元,则应有(x-2.22)×9000=5000解得x≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为根据频率稳定性定理,在要求精确度不是很高的情况下,不妨用表中试验次数最多一次的频率近似地作为事件发生概率的估计值.51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

25.3用频率估计概率12月21日(3)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部