电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换(2)教案 新人教A版必修4-新人教A版高一必修4数学教案VIP免费

高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换(2)教案 新人教A版必修4-新人教A版高一必修4数学教案_第1页
1/5
高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换(2)教案 新人教A版必修4-新人教A版高一必修4数学教案_第2页
2/5
高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换(2)教案 新人教A版必修4-新人教A版高一必修4数学教案_第3页
3/5
3.2简单的三角恒等变换(2)教学目标知识目标(学习目标)通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.能力目标理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.情感态度价值观通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.高考链接(高考考点)积化和差与和差化积是一种换元的体现,高考中体现这种思想教学重点1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学重点认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学方法与教学准备多媒体,讲练结合教学设计教学内容教学策略学生活动和效果预测复习引入:复习倍角公式2S、2C、2T半角公式:先让学生默写三个倍角公式,特别注意2C。半角公式学生口答公式教学内容教学策略学生活动和效果预测二、新课讲解代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,1会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、1sincossinsin2;(2)、sinsin2sincos22.证明:(1)因为sin和sin是我们所学习过的知识,因此我们从等式右边着手.sinsincoscossin;sinsincoscossin.两式相加得2sincossinsin;即1sincossinsin2;(2)由(1)得把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sinαcosβ呢?想到sin(α+β)=sinαcosβ+cosαsinβ.从方程角度看这个等式,sinαcosβ,cosαsinβ分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sinαcosβ的公式,列出sin(α-β)=sinαcosβ-cosαsinβ后,解相应的以sinαcosβ,cosαsinβ为未知数的二元一次方程组,就容易得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只引导学生大体的证明方法,学生自己从右往左展开证明学生自主完成142页练习2把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sinαcosβ看作x,cosαsinβ看作y,把等式看作x,y的方程,通过解方程求得x2sinsin2sincos①;设,,那么,22.把,的值代入①式中得sinsin2sincos22.思考:在例2证明中用到哪些数学思想?例2证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.讨论结果:①α是2a的二倍角.②sin22a=1-cos2cos1a.③④⑤略(见活动).目标检测:化简:.cossin1cossin1xxxx需做个变换,令α+β=θ,α-β=φ,则α=2,β=2,代入(1)式即得(2)式.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sinαcosβ看作x,cosαsi...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换(2)教案 新人教A版必修4-新人教A版高一必修4数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部