第一章第二节任意角的三角函数第一课时\s\up7()教学分析学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.本节以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.三角函数的研究中,数形结合思想起着非常重要的作用.利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.三维目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符号.2.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.3.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等.教学难点:用角的终边上的点的坐标来刻画三角函数;三角函数符号;利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.课时安排2课时\s\up7()第1课时作者:范福太,上杭县明强中学教师,本教学设计获福建省教学设计大赛二等奖一、复习引入、回想再认(情景1)我们在初中通过直角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?图1学生口述后再投影展示,教师再根据投影进行强调:sinα=,cosα=,tanα=设计意图学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.二、引申铺垫、创设情景(情景2)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!留时间让学生独立思考或自由讨论,教师参与讨论或巡回对个别学生作启发引导.能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于1.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.设计意图从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程.教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!师生共做(学生口述,教师板书图形和比值):把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作PM⊥x轴于M,构造一个Rt△OMP,则∠MOP=α(锐角),设P(x,y)(x>0、y>0),α的邻边OM=x,对边MP=y,斜边长|OP|=r.图2根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数的比值:sinα==,cosα==,tanα==.?=?=?=设计意图此处做法简单,思想重...