4.4数学探究活动:了解高考选考科目的确定是否与性别有关(略)[巩固层·知识整合][提升层·题型探究]条件概率、乘法公式及全概率公式【例1】设某批产品中,甲、乙、丙三厂生产的产品分别占45%,35%,20%,各厂的产品的次品率分别为4%,2%,5%,现从中任取一件.(1)求取到的是次品的概率;(2)经检验发现取到的产品为次品,求该产品是甲厂生产的概率.[解]记事件A1:“该产品是甲厂生产的”,事件A2:“该产品为乙厂生产的”,事件A3:“该产品为丙厂生产的”,事件B:“该产品是次品”.由题设,知P(A1)=45%,P(A2)=35%,P(A3)=20%,P(B|A1)=4%,P(B|A2)=2%,P(B|A3)=5%.(1)由全概率公式得P(B)=∑P(Ai)P(B|Ai)=3.5%.(2)由贝叶斯公式得P(A1|B)==.无论条件概率公式PA|B=,乘法公式PAB=PBPA|B,还是贝叶斯公式PA|B==都反映了PA,PB|A,PAB三者之间的转化关系,灵活应用即可.[跟进训练]1.外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.若第二次取出的是红球,则称试验成功,求试验成功的概率.[解]设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},易得P(A)=,P(B)=,P(R|A)=,P(R|B)=,事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=×+×=0.59.独立重复试验与二项分布【例2】实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)按比赛规则甲获胜的概率.[解](1)甲、乙两队实力相等,所以每局比赛甲获胜的概率为,乙获胜的概率为.记事件A=“甲打完3局才能取胜”,记事件B=“甲打完4局才能取胜”,记事件C=“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜,∴甲打完3局取胜的概率为P(A)=C=.②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负,∴甲打完4局才能取胜的概率为P(B)=C×××=.③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负,∴甲打完5局才能取胜的概率为P(C)=C×××=.(2)事件D=“按比赛规则甲获胜”,则D=A+B+C,又 事件A,B,C彼此互斥,故P(D)=P(A)+P(B)+P(C)=++=,∴按比赛规则甲获胜的概率为.1.在求n次独立重复试验中事件恰好发生k次的概率时,首先要确定好n和k的值,再准确利用公式求概率.2.根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n和变量的概率,求得概率.[跟进训练]2.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分.假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.[解]记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.(1)这名同学得300分的概率为:P1=P(A1∩2∩A3)+P(1∩A2∩A3)=P(A1)P(2)P(A3)+P(1)P(A2)P(A3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228.(2)这名同学至少得300分的概率为:P2=P1+P(A1∩A2∩A3)=P1+P(A1)P(A2)P(A3)=0.228+0.8×0.7×0.6=0.564.离散型随机变量的分布列、均值和方差【例3】某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300元的台式电脑一台,得到奖券4张.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列.(2...