2014届高三文科数学一轮复习讲义§3.5直线与圆的位置关系(2)复习目标:(1)能综合运用直线与圆的知识解决有关的范围和最值问题;(2)通过直线与圆的位置关系的研究,体会数形结合、转化与化归的思想,提升观察、发现、分析和解决问题的能力。复习过程:活动一:基础自测2.已知点在圆上运动.则的最小值为;则的最大值为.3.已知直线过点,当直线与圆有两个交点时,则斜率的取值范围是____________4.若直线y=x+m与曲线=x有一个不同的交点,则实数m的取值范围为5.已知是直线的动点,是圆的两条切线,是切点,是圆心,则四边形面积的最小值为活动二:利用数形结合、函数思想处理与圆有关的范围和最值问题1.已知,,点在圆上运动,则的最小值是.2.已知圆上有个点到直线的距离都等于,求的值.变式:①若圆上有且只有两个点到直线的距离等于1,则半径范围是12014届高三文科数学一轮复习讲义②若圆上至少有三个不同点到直线:的距离为,则直线的斜率的取值范围是3.已知圆心在第一象限的圆的半径为,且与直线切于点.(1)求圆的方程;(2)从圆外一点引圆的切线,为切点,且(为坐标原点),求的最小值.4.已知⊙O的圆心为原点,半径为,⊙M的方程为,过⊙M上任一22014届高三文科数学一轮复习讲义点P作⊙O的切线PA、PB,切点为A、B.(1)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的直线方程;(2)求的取值范围;(3)求的取值范围,3