试题习题,尽在百度百度文库,精选试题A级1.已知数列{an}中,a1=a2=1,an+2=an+2,n是奇数,2an,n是偶数,则数列{an}的前20项和为()A.1121B.1122C.1123D.1124解析:由题意可知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n-1}是首项为1,公差为2的等差数列,故数列{an}的前20项和为1×1-2101-2+10×1+10×92×2=1123.选C.答案:C2.若数列{an}满足a1=15,且3an+1=3an-2,则使ak·ak+1<0的k值为()A.22B.21C.24D.23解析:因为3an+1=3an-2,所以an+1-an=-23,所以数列{an}是首项为15,公差为-23的等差数列,所以an=15-23·(n-1)=-23n+473,令an=-23n+473>0,得n<23.5,所以使ak·ak+1<0的k值为23.答案:D3.(2017·广东省五校协作体第一次诊断考试)数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则1a1+1a2+⋯+1a2016等于()A.40322017B.40282015C.20152016D.20142015解析:由a1=1,an+1=a1+an+n可得an+1-an=n+1,利用累加法可得an-a1=n-1n+22,所以an=n2+n2,所以1an=2n2+n=21n-1n+1,故1a1+1a2+⋯+1a2016=211-12+12-13+⋯+12016-12017=21-12017=40322017,选A.试题习题,尽在百度百度文库,精选试题答案:A4.(2017·湖北省七市(州)联考)在各项都为正数的数列{an}中,首项a1=2,且点(a2n,a2n-1)在直线x-9y=0上,则数列{an}的前n项和Sn等于()A.3n-1B.1--3n2C.1+3n2D.3n2+n2解析:由点(a2n,a2n-1)在直线x-9y=0上,得a2n-9a2n-1=0,即(an+3an-1)(an-3an-1)=0,又数列{an}各项均为正数,且a1=2,∴an+3an-1>0,∴an-3an-1=0,即anan-1=3,∴数列{an}是首项a1=2,公比q=3的等比数列,其前n项和Sn=a11-qn1-q=2×3n-13-1=3n-1,故选A.答案:A5.已知等比数列{an}的前n项和为Sn,若a2=12,a3·a5=4,则下列说法正确的是()A.{an}是单调递减数列B.{Sn}是单调递减数列C.{a2n}是单调递减数列D.{S2n}是单调递减数列解析:由于{an}是等比数列,则a3a5=a24=4,又a2=12,则a4>0,a4=2,q2=16,当q=-66时,{an}和{Sn}不具有单调性,选项A和B错误;a2n=a2q2n-2=12×16n-1单调递减,选项C正确;当q=-66时,{S2n}不具有单调性,选项D错误.答案:C6.在数列{an}中,a1=1,an+2+(-1)nan=1.记Sn是数列{an}的前n项和,则S100=________.解析:当n=2k时,a2k+2+a2k=1;当n=2k-1时,a2k+1=a2k-1+1,所以a2k-1=1+(k-1)×1=k.所以S100=(a1+a3+⋯+a99)+(a2+a4+a6+a8+⋯+a100)=1+502×50+25=1275+25=1300.答案:13007.(2016·全国卷乙)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2⋯an的最大值为________.试题习题,尽在百度百度文库,精选试题解析:设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=12.又a1+a1q2=10,∴a1=8.故a1a2⋯an=an1q1+2+⋯+(n-1)=23n·12n-1n2=23n-n22+n2=2-n22+72n.记t=-n22+7n2=-12(n2-7n),结合n∈N*可知n=3或4时,t有最大值6.又y=2t为增函数,从而a1a2⋯an的最大值为26=64.答案:648.设某数列的前n项和为Sn,若SnS2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d(d≠0)的等差数列{an}为“和谐数列”,则该等差数列的公差d=________.解析:由SnS2n=k(k为常数),且a1=1,得n+12n(n-1)d=k2n+12×2n2n-1d,即2+(n-1)d=4k+2k(2n-1)d,整理得,(4k-1)dn+(2k-1)(2-d)=0. 对任意正整数n,上式恒成立,∴d4k-1=0,2k-12-d=0,得d=2,k=14,∴数列{an}的公差为2.答案:29.已知等比数列{an}的前n项和为Sn,且6Sn=3n+1+a(n∈N*).(1)求a的值及数列{an}的通项公式;(2)若bn=(1-an)log3(a2n·an+1),求数列1bn的前n项和Tn.解析:(1) 6Sn=3n+1+a(n∈N*),∴当n=1时,6S1=6a1=9+a,当n≥2时,6an=6(Sn-Sn-1)=2×3n,即an=3n-1, {an}是等比数列,∴a1=1,则9+a=6,得a=-3,∴数列{an}的通项公式为an=3n-1(n∈N*).试题习题,尽在百度百度文库,精选试题(2)由(1)得b...