25.2.2用列举法求概率第二十五单元概率初步问题2:抛掷一个骰子,它落地时①向上的的数为2的概率是多少?②落地时向上的数是3的倍数的概率是多少?③点数为奇数的概率是多少?④点数大于2且小于5的数的概率是多少?复习问题1:掷一枚一硬币,正面向上的概率是多少?1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是().2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有()种.A.4B.7C.12D.81.412143探究3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于().1311214134.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的一半的概率是().61312132课堂小结(一)等可能性事件的两的特征:1.出现的结果有限多个;2.各结果发生的可能性相等;(二)列举法求概率.1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图(下课时将学习)等.例1.口袋中一红三黑共4个小球,一次从中取出两个小球,求“取出的小球都是黑球”的概率?解:一次从口袋中取出两个小球时,所有可能出现的结果共6个(红,黑1)(红,黑2)(红,黑3)(黑1,黑2)(黑1,黑3)(黑2,黑3)且它们出现的可能性相等。满足取出的小球都是黑球(记为事件A)的结果有3个,即(黑1,黑2)(黑1,黑3)(黑2,黑3),则P(A)==2163直接列举例2同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2例题解析123456123456第一个第二个(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)对两枚骰子可能出现的情况进行分析,列表如下解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)==(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)==(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=366613649136112、如果把上一个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所有可能出现的结果有变化吗?当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。1、什么时候用“列表法”方便?改动后所有可能出现的结果没有变化想一想在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第一张第二张例题解析对所有可能出现的情况进行列表,如右图解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)==3614187例3甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?本题中元音字母:AEI辅音字母:BCDH例题解析甲乙丙ACDEHIHIHIBCDEHIHIHIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI对所有可能出现的情况进行列表,如下图所示解:由树形图得,所有可能出现的结果有12个,它们...