相似三角形的动点问题1.如一W图中,山匚",川'八;」,动点P从点B出发,在BA边上以每秒-的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒人'的速度向点B匀速运动,运动时间为t秒接PQ.⑴右•与相似,求t的值;⑵连接AQ、CP,若■''■'',求t的值.一•相似三角形的动点问题如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,ADMN为等边三角形(点M的位置改变时,ADMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动•设移动开始后第t秒时,AEFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.CD迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断的形状,并说明理由;(2)设的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APRS^PRQ?2、如图,在直角梯形ABCD中,AB〃DC,ZD=90o,AC丄BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(00).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求AEPO与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被AEPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由D二、动点加动线例1、如图,在RtAABC中,ZC=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q至哒点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q至UAC的距离是;(2)在点P从C向A运动的过程中,求厶APQ的面积S与t的函数关系式;(不必写出t的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.r迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD的边长为4,E是BC边...