电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

1.6微积分基本定理VIP免费

1.6微积分基本定理_第1页
1/15
1.6微积分基本定理_第2页
2/15
1.6微积分基本定理_第3页
3/15
1.6微积分基本定理1.由定积分的定义可以计算,但比较麻烦(四步曲),有没有更加简便有效的方法求定积分呢?12013xdx一、引入1205(2)3tdt13014xdx22083xdx12()()inSsbsassss()sb()sa'11()()iiibaStstvtn12111()nniniiiibaSssssSvtn111'limli()()(m()())nnbiiannibaibaSSvtstvtdttbsands由定积分的定义得'()()()()babastdSvtdttsbsa定理(微积分基本定理)二、牛顿—莱布尼茨公式()|()()()bbaafxdxFbxFFa或(F(x)叫做f(x)的原函数,f(x)就是F(x)的导函数)如果f(x)是区间[a,b]上的连续函数,并且F’(x)=f(x),则bafxdxFbFa()()()例1计算下列定积分211(1)dxx解(1)∵1(lnx)=x31(2)2xdx3221|318321(2)2xdx=x21=lnx|=ln2-ln1=ln2211dxx()()|()()bbaafxdxFxFbFa找出f(x)的原函数是关健练习:101013023-1(1)1dx=______(2)xdx=______(3)xdx=______(4)xdx=______12141541例2.计算下列定积分原式33221111()dxdxdxdxxx332211=3x3x解:∵32211(3x-)dxx211)xx32(x)=3x,(3311176(31)()313x33311=x||()()|()()bbaafxdxFxFbFa练习:10______(1)xxe12022-121(1)(-3t+2)dt(3)(3x+2x-1)dx=______(4)dx=______(2)(e+2x)dx=______1e2-e+19e()()|()()bbaafxdxFxFbFa例3.计算下列定积分20(2)cosxdx0(1)sinxdx解(1)∵'(s)sincoxx00sin(s)|cos(cos0)112xdxcox思考:()a的几何意义是什么0sinxdx?22()()bc00sinxdx=_______sinxdx=_______0120(2)cosxdx2200cossin|sinsin01012xdxx'(sin)cosxx解思考:2()a的几何意义是什么0cosxdx?2()()bc00cosxdx=_______cosxdx=_______00微积分基本定理三、小结牛顿-莱布尼茨公式沟通了导数与定积分之间的关系.()()|()()bbaafxdxFxFbFa|bacx11|1nbaxn++cos|bax-sin|bax常用定积分公式'6)()xxbxaedeex®==ò'7)()lnbxxxaadxaaa=®=ò'15)(ln)1baxxdxx=®=ò'1)()bacxccdx=®=ò'12)nnbnaxxxnxd-®==ò'3)(sin)coscosbaxxxdx®==ò'4)(cos)sinsinbaxdxxx=-=®òln|||bax|xbae|lnxbaaa

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

1.6微积分基本定理

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部