电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

压轴题命题区间(二)第二课时 利用导数探究含参数函数的性质VIP免费

压轴题命题区间(二)第二课时 利用导数探究含参数函数的性质_第1页
1/24
压轴题命题区间(二)第二课时 利用导数探究含参数函数的性质_第2页
2/24
压轴题命题区间(二)第二课时 利用导数探究含参数函数的性质_第3页
3/24
利用导数探究含参数函数的性质结束第二课时利用导数探究含参数函数的性质利用导数研究函数的单调性[典例]已知函数g(x)=lnx+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.利用导数探究含参数函数的性质结束[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x. 函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1x.利用导数探究含参数函数的性质结束由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=12a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<12a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.利用导数探究含参数函数的性质结束综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,在1,12a上单调递减,在12a,+∞上单调递增;当a=12时,函数g(x)在(0,+∞)上单调递增,当a>12时,函数g(x)在0,12a上单调递增,在12a,1上单调递减,在(1,+∞)上单调递增.利用导数探究含参数函数的性质结束[方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a=0或a>0两种情况,再比较12a和1的大小.利用导数探究含参数函数的性质结束[对点演练](2016·太原一模)已知函数f(x)=x-alnx(a∈R).(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)设函数h(x)=f(x)+1+ax,求函数h(x)的单调区间.解:(1)当a=2时,f(x)=x-2lnx,f(1)=1,即切点为(1,1), f′(x)=1-2x,∴f′(1)=1-2=-1,∴曲线y=f(x)在点(1,1)处的切线方程为y-1=-(x-1),即x+y-2=0.利用导数探究含参数函数的性质结束(2)由题意知,h(x)=x-alnx+1+ax(x>0),则h′(x)=1-ax-1+ax2=x2-ax-1+ax2=x+1[x-1+a]x2,①当a+1>0,即a>-1时,令h′(x)>0, x>0,∴x>1+a,令h′(x)<0, x>0,∴0<x<1+a.②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a+1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.利用导数探究含参数函数的性质结束[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+lnx).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.利用导数研究函数的极值[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.利用导数探究含参数函数的性质结束(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+alna,极小值是f(1)=-12.利用导数探究含参数函数的性质结束②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f(x)没有极值点,故无极值.③当a>1时,若x∈(0,1),则f′(x)>0,函数f(x)单调递增;若x∈(1,a),则f′(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f′(x)>0,函数f(x)单调递增.此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-12,极小值是f(a)=-12a2+alna.综上,当0<a<...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

压轴题命题区间(二)第二课时 利用导数探究含参数函数的性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部