(1)恒成立问题1.∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2.∀x∈D,均有f(x)﹤A恒成立,则f(x)max
g(x)恒成立,则F(x)=f(x)-g(x)>0∴F(x)min>04.∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)﹤0∴F(x)max﹤05.∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)max6.∀x1∈D,∀x2∈E,均有f(x1)A成立,则f(x)max>A;2.∃x0∈D,使得f(x0)﹤A成立,则f(x)ming(x0)成立,设F(x)=f(x)-g(x)∴F(x)max>04.∃x0∈D,使得f(x0)g(x2)成立,则f(x)max>g(x)min6.∃x1∈D,∃x2∈E,均使得f(x1)g(x2)成立,则f(x)min>g(x)min2.∀x1∈D,∃x2∈E,使得f(x1)A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)0恒成立,故f(x)在R上是增函数.又f(-x)=-f(x),∴y=f(x)为奇函数.由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),∴mx-2<-x,mx-2+x<0在m∈[-2,2]上恒成立.记g(m)=xm-2+x,则g(-2)<0,g(2)<0,即-2x-2+x<0,2x-2+x<0,得-20,∴4m2-3≥0.即:m≥32或m≤-32.(2)已知f(x)=lnx:①设F(x)=f(x+2)-,求F(x)的单调区间;②若不等式f(x+1)≤f(2x+1)-m2+3am+4对任意a∈[-1,1],x∈[0,1]恒成立,求m的取值范围.2xx1【解题指南】(2)由题意只需解不等式F′(x)>0和F′(x)<0即可得到单调区间;原不等式恒成立可转化为恒成立,进一步转化为成立.2x1ln3ma4m2x12maxminx1(ln)(3ma4m)2x1(2)①F(x)=ln(x+2)-定义域为:(-2,-1)∪(-1,+∞).F′(x)==令F′(x)>0,得单调增区间为和令F′(x)<0,得单调减区间为和2xx12212(x1)2x12x2(x1)x2(x1)2222(x1)2(x2)x3,(x2)(x1)(x2)(x1)...