方程有两个不等的实数解)0(02acbxax042acb判断下列命题是真命题还是假命题:(1)若,则;22baxabx2(6)若,则;22yxyx(3)全等三角形的面积相等;(4)对角线互相垂直的四边形是菱形;(2)若,则;0ab0a(5)若方程有两个不等的实数解,则.)0(02acbxax042acb真真假假真真假假假假真真abxbax222两三角形全等两三角形面积相等充分条件与必要条件:一般地,如果已知那么就说,p是q的充分条件,q是p的必要条件.qp的充分条件是abxbax222的必要条件是222baxabx两三角形全等是两三角形面积相等的充分条件.两三角形面积相等是两三角形全等的必要条件.两三角形全等两三角形面积相等abxbax222例如:例如:.,3;)()(2;03411122为无理数则为无理数)若(为增函数,则)若(,则)若(的充分条件?是命题中的”形式的命题中,哪些,则:下列“若例xxxfxxfxxxqpqp.(1)(2),.(3),(1)(2):的充分条件是中的命题所以是假命题命题是真命题命题解qp要条件。的必不是的充分条件,不是。此时,我们就说,记作推不出”为假命题,那么由,则“如果若pqqpqpqpqp要条件。的必不是的充分条件,不是。此时,我们就说,记作推不出”为假命题,那么由,则“如果若pqqpqpqpqp.,(3);2;1222bcacbayxyxpqqp则若相等则这两个三角形的面积)若两个三角形全等,(,则)若(的必要条件?是命题中的”形式的命题中,哪些,则“:下列若例.(1)(2),.(3),(1)(2):的必要条件是中的命题所以是假命题命题是真命题命题解pq思考:“若p,则q”的逆命题成立,p是q的什么条件?p是q的必要条件.就是说:由pq可知p是q的必要条件,q是p的充分条件.通俗地说,就是“p被q推出”判断为“p是q必要条件”.如果“若p,则q”是真命题,且它的逆命题也是真命题即pq且pq,我们就说,p是q的充分必要条件,简称充要条件.记为pq.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果pq,那么p与q互为充要条件.注:1.“p是q的充要条件”也说成“p与q等价”、“p当且仅当q”等.2.充要条件是非常好的一种条件,因为可以相互等价转化.思考:“若p,则q”的原命题与逆命题均是真命题,p是q的什么条件?q是p的什么条件?pqpq且且例3、下列各题中,那些p是q的充要条件?(1)p:b=0,q:函数f(x)=ax2+bx+c是偶函数;(2)P:x>0,y>0,q:xy>0;(3)P:a>b,q:a+c>b+c.解:在(1)(3)中,pq,所以(1)(3)中的p是q的充要条件。在(2)中,qp,所以(2)中p的不是q的充要条件。练习:课本P101,2,3,4课堂小结(1)充分条件、必要条件的概念.(2)判断“若p,则q”命题中,条件p是q的什么条件.课后探讨:下列生活中名言名句的充要关系如何?(1)骄兵必败(2)有志者事竞成(3)名师出高徒(4)玉不琢,不成器布置作业:P12页习题1.2A组第三题2、四种命题及相互关系1、命题:可以判断真假的陈述句可以写成:若p则q。复习旧知引入新课原命题若p则q逆命题若q则p否命题若p则q逆否命题若q则p互逆互逆互否互否互为逆否回顾1pqpq),是的充分件若p则q(真)q是p的必要条件若q则p(真)q是p的充分条件,p是q的必要条件2qp)的什么条件?又是的什么条件?是那么的倍数。和是:整数的倍数,是整数已知pqqpaqap326:的什么条件?又是的什么条件?是那么的倍数。和是:整数的倍数,是整数已知pqqpaqap326:充要条件。的充分必要条件,简称是此时,我们说,,就记作,又有一般地,如果既有qpqppqqp互为充要条件。与,那么如果qpqp练习:p:三角形的三条边相等;q:三角形的三个角相等..::(3);0:00:2;)(:0:132cbcaqbapxyqyxpcbxaxxfqbpqp,,,)(是偶函数函数,)(的充要条件?是:下列各题中,哪些例的充要条件。不是中的,所以中,的充要条件。在是中的,所以中,在解qppqqpqp(2)(2)(1)(3)(1)(3):3.设p是q的充分不必要条件,则是的条件.pq必要不充分必要不充分相切的充要条件。⊙与是直线求证:。的距离为到直线,圆心的半径为⊙:已知:例OlrddlOrO4POQ1.设集合M={x|0