多项式的运算本章内容第4章多项式的加法和减法本课内容本节内容4.1动脑筋给定两个多项式:x2+5x-8与-2x2+3x-3,如何求它们的和与差?不就是合并同类项吗?不就是合并同类项吗?还要注意去括号的法则.还要注意去括号的法则.举例例1求多项式x2+5x-8与多项式-2x2+3x-3的和与差.解(x2+5x-8)+(-2x2+3x-3)=x2+5x-8-2x2+3x-3=-x2+8x-11.(x2+5x-8)-(-2x2+3x-3)=x2+5x-8+2x2-3x+3=3x2+2x-5.举例例2先化简下式,再求值:222212363122xyxyxyxyx=y=--其中(),,.222212363xyxyxyxy(),解--12y=当x=-2,时,24=xy原式222222=xyxy+xy+xy-24=xy.21422=()×-×2=.-做一做把多项式2xy2-3x2y+1先按x的指数从大到小的次序排列(称为按x的降幂排列);再按y的指数从小到大的次序排列(称为按y的升幂排列).把x的降幂排列为:-3x2y+2xy2+1.把x的降幂排列为:-3x2y+2xy2+1.把y的升幂排列为:1-3x2y+2xy2.把y的升幂排列为:1-3x2y+2xy2.练习1.求下列多项式的和与差:(1)2x3-3x2-x与–x2+x-1;(2)3x2y-2xy+y2与2xy+y2.解:2x3-3x2-x+(-x2+x-1)(1)2x3-3x2-x与–x2+x-1;=2x3-3x2-x-x2+x-1=2x3-4x2-12x3-3x2-x-(-x2+x-1)=2x3-3x2-x+x2-x+1=2x3-2x2-2x+1解:3x2y-2xy+y2+(2xy+y2).(2)3x2y-2xy+y2与2xy+y2.=3x2y-2xy+y2+2xy+y2=3x2y+2y23x2y-2xy+y2-(2xy+y2).=3x2y-2xy+y2-2xy-y2=3x2y-4xy2.把下列多项式先按x的降幂排列,然后分别求它们的和与差.(1)2x2-3x3-x+1与2x-3x3+x2-1;(2)3x2+2x3y-xy2与2xy2-4x3y+5x2.解:降幂排列:(1)2x2-3x3-x+1与2x-3x3+x2-1;-3x3+2x2-x+1,-3x3+x2+2x-1;-3x3+2x2-x+1+(-3x3+x2+2x-1)=-3x3+2x2-x+1-3x3+x2+2x-1=-6x3+3x2+x-3x3+2x2-x+1-(-3x3+x2+2x-1)=-3x3+2x2-x+1+3x3-x2-2x+1=x2-3x+2解:降幂排列:(2)3x2+2x3y-xy2与2xy2-4x3y+5x2.2x3y+3x2-xy2,-4x3y+5x2+2xy2;2x3y+3x2-xy2+(-4x3y+5x2+2xy2)=2x3y+3x2-xy2-4x3y+5x2+2xy2=-2x3y+8x2+xy22x3y+3x2-xy2-(-4x3y+5x2+2xy2)=2x3y+3x2-xy2+4x3y-5x2-2xy2=6x3y-2x2-3xy2中考试题例1化简(x2+y2)-3(x2-2y2)的最后结果是.解析原式=x2+y2-3x2+6y2=-2x2+7y2.故,应填-2x2+7y2.-2x2+7y2中考试题例2已知(2a+b+3)2+|b-1|=0,求5a+{-2a-3[2b+(3a-2b-1)-8-a]+1}的值.解析因为(2a+b+3)2+|b-1|=0,所以2a+b+3=0,b-1=0.解得a=-2,b=1.5a+{-2a-3[2b+(3a-2b-1)-8-a]+1}=5a+{-2a-3[2b-8+3a-2b-1-a]+1}=5a+{-2a-3[2a-9]+1}=5a+{-2a-6a+27+1}=5a-2a-6a+28=-3a+28.当a=-2,b=1时,原式=-3×(-2)+28=34.结束