四边形的性质与判定知识点梳理1.定义平行四边形两组对边分别平行的四边形是平行四边形矩形有一个角是直角的平行四边形是矩形菱形有一组邻边相等的平行四边形是菱形正方形有一个角是直角,有一组邻边相等的平行四边形是正方形2.性质:性质平行四边形矩形菱形正方形对边平行对边相等对角相等对角线互相平分四边相等四个角都是直角对角线相等对角线互相垂直每条对角线平分一组对角轴对称图形中心对称图形3.判定:平行四边形矩形4.知识梳理1.两组对边分别平行的四边形是平行四边形。(定义)2.两组对边分别相等的四边形是平行四边形。3.一组对边平行且相等的四边形是平行四边形。4.两组对角分别相等的四边形是平行四边形。5.对角线互相平分的四边形是平行四边形。1.有一个角是直角的平行四边形是矩形。(定义)2.三个角是直角的四边形是矩形。3.对角线相等的平行四边形是矩形。其它:对角线相等且互相平分的四边形。菱形正方形1.有一组邻边相等的平行四边形是菱形。(定义)2.四边相等的四边形是菱形。3.对角线互相垂直的平行四边形是菱形。其它:1对角线垂直且互相平分的四边形是菱形。2.一条对角线平分一组对角的平行四边形是菱形。1.有一个角是直角,有一组邻边相等的平行四边形是正方形。(定义)2.一组邻边相等的矩形是正方形。3.有一个角是直角的菱形是正方形。其它:对角线互相平分相等且垂直的四边形是正方形。1.四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180°;(2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.ABDOCABDOCABCD12345.矩形的性质:因为ABCD是矩形6.矩形的判定:四边形ABCD是矩形.7.菱形的性质:因为ABCD是菱形8.菱形的判定:四边形四边形ABCD是菱形.9.正方形的性质:因为ABCD是正方形(1)CDAB(2)ABCDOADBCADBCOADBCADBCOCDBAOCDBAO10.正方形的判定:四边形ABCD是正方形.(3)∵ABCD是矩形又∵AD=AB∴四边形ABCD是正方形11.等腰梯形的性质:因为ABCD是等腰梯形12.等腰梯形的判定:四边形ABCD是等腰梯形(3)∵ABCD是梯形且AD∥BC∵AC=BD∴ABCD四边形是等腰梯形13.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.14.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.CDABABCDOABCDOEFDABC