2.与数列有关的压轴小题1.设等差数列{an}的前n项和为Sn,Sm-1=13,Sm=0,Sm+1=-15,其中m∈N*且m≥2,则数列1anan+1的前n项和的最大值为()A.24143B.1143C.2413D.613答案D解析由题意可得am=Sm-Sm-1=-13,am+1=Sm+1-Sm=-15,d=am+1-am=-2,由Sm=ma1+mm-1d2=0可得a1-m=-1,又am=a1+(m-1)d=-13,可得a1-2m=-15,a1=13,m=14,an=15-2n,故Tn=1a1a2+1a2a3+⋯+1anan+1=1d1a1-1a2+1a2-1a3+⋯+1an-1an+1=-12113-113-2n=-126+1213-2n,可知当n=6时,Tn取得最大值613.2.(2017·保定模拟)已知函数f(x)=3-ax-6,x≤10,ax-9,x>10,若数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,则实数a的取值范围是()A.(1,3)B.(1,2]C.(2,3)D.2411,3答案C解析因为{an}是递增数列,所以3-a>0,a>1,3-a×10-6<a11-9,解得2<a<3,故选C.3.在数列{an}中,an>0,a1=12,如果an+1是1与2anan+1+14-a2n的等比中项,那么a1+a222+a332+a442+⋯+a1001002的值是()A.10099B.101100C.100101D.99100答案C解析由题意,得a2n+1=2anan+1+14-a2n,所以a2n+1a2n+2anan+1+1=4a2n+1,(an+1an+1)2=4a2n+1,所以an+1an+1=2an+1,即an+1=12-an,由a1=12,得a2=23,a3=34,⋯,an=nn+1,所以ann2=1nn+1=1n-1n+1,a1+a222+a332+⋯+a1001002=1-12+12-13+⋯+1100-1101=100101.4.(2017·安徽淮北一中四模)已知等差数列{an}的公差d>0,且a2,a5-1,a10成等比数列,若a1=5,Sn为数列{an}的前n项和,则2Sn+n+32an+1的最小值为()A.33B.27C.203D.173答案C解析由于a2,a5-1,a10成等比数列,所以(a5-1)2=a2·a10,(a1+4d-1)2=(a1+d)·(a1+9d),解得d=3,所以2Sn+n+32an+1=3n2+8n+323n+3=133n+1+27n+1+2≥203,当且仅当n=2时“=”成立.5.已知函数f(x)=x2+(a+8)x+a2+a-12,且f(a2-4)=f(2a-8),设等差数列{an}的前n项和为Sn(n∈N*),若Sn=f(n),则Sn-4aan-1的最小值为()A.276B.358C.143D.378答案D解析由题意可得a2-4=2a-8或a2-4+2a-8=2×-a+82,解得a=1或a=-4.当a=1时,f(x)=x2+9x-10,数列{an}不是等差数列;当a=-4时,f(x)=x2+4x,Sn=f(n)=n2+4n,∴a1=5,a2=7,an=5+(7-5)(n-1)=2n+3,∴Sn-4aan-1=n2+4n+162n+2=12×n+12+2n+1+13n+1=12×n+1+13n+1+2≥122n+1×13n+1+2=13+1,当且仅当n+1=13n+1,即n=13-1时取等号, n为正整数,故当n=3时原式取最小值378,故选D.6.设等差数列{an}满足a1=1,an>0(n∈N*),其前n项和为Sn,若数列{Sn}也为等差数列,则Sn+10a2n的最大值是()A.310B.212C.180D.121答案D解析设数列{an}的公差为d,依题意得2S2=S1+S3,因为a1=1,所以22a1+d=a1+3a1+3d,化简可得d=2a1=2,所以an=1+(n-1)×2=2n-1,Sn=n+nn-12×2=n2,所以Sn+10a2n=n+1022n-12=n+102n-12=122n-1+2122n-12=141+212n-12≤121.7.抛物线x2=12y在第一象限内图象上的一点(ai,2a2i)处的切线与x轴交点的横坐标记为ai+1,其中i∈N*,若a2=32,则a2+a4+a6等于()A.21B.32C.42D.64答案C解析抛物线x2=12y可化为y=2x2,y′=4x在点(ai,2a2i处的切线方程为y-2a2i=4ai(x-ai),所以切线与x轴交点的横坐标为ai+1=12ai,所以数列{a2k}是以a2=32为首项,14为公比的等比数列,所以a2+a4+a6=32+8+2=42,故选C.8.(2017届天津六校联考)已知数列{an}满足:a1=1,an+1=anan+2(n∈N*).若bn+1=(n-2λ)·1an+1(n∈N*),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围是()A.λ>23B.λ>32C.λ<32D.λ<23答案D解析 an+1=anan+2?1an+1=2an+1?1an+1+1=21an+1?1an+1=1a1+1·2n-1=2n,∴bn+1=(n-2λ)·2n, 数列{bn}是单调递增数列,∴当n≥2时,bn+1>bn?(n-2λ)·2n>(n-1-2λ)·2n-1?n>2λ-1?2>2λ-1?λ<32;当n=1时,b2>b1?(1-2λ)·2>-λ?λ<23,因此λ<23,故选D.9.(2017届湖南省岳阳市质量检测)执行如图所...