莱布尼茨莱布尼茨数学微积分1666年,莱布尼茨写成“论组合术”(DeArtCombinatoria)一文,讨论了平方数序列0,1,4,916,⋯的性质,例如它的第一阶差为1,3,5,7,⋯,第二阶差则恒等于2,2,2,⋯等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为1+3+5+7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列.1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,⋯)倒数的级数之和莱布尼茨圆满地解决了这一问题,他是这样计算的:初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献.对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristictriangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ则是“P和Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值.利用这个特征三角形,他很快就意识到两个问题:(1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx.(2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和.有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”.根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将图1中特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differentialtriangle)如图2,其中ds2=dx2+dy2.利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式这一公式是从几何图形中推导出来的,经常被他用来求面积.1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式同时,他还给出了曲线长度公式在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式1676年11月,他得出了公式其中n是整数或分数(n≠-1).莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系.莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式)(A为...