仅供个人学习参考北师大版八年级下册数学考试大纲第一章三角形的证明一、全等三角形的判定及性质※1性质:全等三角形对应角相等、对应边相等※2判定:①判定一般三角形全等:(SSS、SAS、ASA、AAS).②判定直角三角形全等独有的方法:有斜边和一条直角边对应相等的两个直角三角形全等,即HL二.等腰三角形※1.性质:等腰三角形的两个底角相等(等边对等角).※2.判定:有两个角相等的三角形是等腰三角形(等角对等边).※3.推论:等腰三角形顶角平分线、底边中线、底边上的高互相重合(即“三线合一”).※4.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:(1)有一个角是60°的等腰三角形是等边三角形;(2)三个角都相等的三角形是等边三角形.三.直角三角形※1.勾股定理及其逆定理如果三角形的三边长a、b、c满足关系22ba=2c,那么这个三角形是直角三角形(勾股定理的逆定理)(满足的三个正整数,称为勾股数:,常见的勾股数有:(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17(5)7,24,25(6)9,40,41※2.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.仅供个人学习参考※3.直角三角形斜边上的中线等于斜边的一半。要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法.四.线段的垂直平分线※1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到线段两端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.※2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.五.角平分线※1.角平分线的性质及判定定理性质:角平分线上的点到角两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.※2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心六.多边形的内角和与外角和:任意n边形的内角和为0180)2(n(n≥3);任意n边形的外角和为3600第二章一元一次不等式和一元一次不等式组一.不等式的基本性质※1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变。(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。仅供个人学习参考※2.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果ab同大取大x>a同小取小a