14.3.2公式法(1)导学案——用平方差公式分解因式【学习目标】1.进一步理解因式分解的意义,掌握用平方差公式分解因式的方法。.2.掌握提公因式法、平方差公式法分解因式的综合运用。【学习重难点】重点:用平方差公式法进行因式分解.难点:把多项式进行必要变形,灵活运用平方差公式分解因式【学习过程】一、自主预学自学课本116页(从开始到例3完)思考下面问题:1.因式分解中的平方差公式与乘法公式中的平方差公式有什么关系?2.能用平方差公式分解因式的多项式有什么特点?分解后的结果是什么?3.用平方差公式分解因式的步骤有哪些?自我评价:1.整式乘法中我们学习了乘法公式:两数和乘以这两数差:即:(1)(a+b)(a-b)=a2-b2左边是整式的乘积,右边是一个多项式,把这个等式反过来就是_____,左边是__________,右边是___________请你判断一下,第二个式子从左到右是不是因式分解?像这样将乘法公式反过来用,对多项式进行因式分解,这种因式分解方法称为_______.用字母表示为__________用语言叙述为:两数的平方差,等于这两数的______与这两数的______的积。2.分解因式:①4a2−b2;②25x4−16y2;③19x2−4y2.=___________=_____________==______________==二、合作探究议一议:下列多项式可以用平方差公式分解吗?若能分解,请分解因式:(1)x2-y2;(2)x2+y2;(3)-x2-y2;(4)-x2+y2;(5)a2-b2+2ab;(6)4x2-9y.总结能用平方差公式分解因式的多项式的特点:(1).(2).(3).三、自信展示公式中的字母可以是单项式,也可以是.由此,请组内的“帮辅对子”互出两道能用平方差公式分解因式的题目并做出结果,然后各组选择两道出的比较好的题目展示出来(包括解题过程).四、精讲导学:1、分解因式:(1)x4-y4(2)a3b-ab2、解题后反思:以上两题说明分解因式要注意什么问题?五、课堂小结⑴对自己说我的收获.⑵对小组成员说我的贡献是.⑶对老师说我的疑问是.注意:1分解因式的步骤是首先提公因式,然后考虑用公式。2因式分解进行到每一个多项式的因式不能再分解为止。3计算中运用因式分解,可使计算简便。六、课堂检测(一)、★1.下列分解因式是否正确:(1)-x2-y2=(x+y)(x-y)(2)9-25a2=(9+25a)(9-25a)(3)-4a2+9b2=(-2a+3b)(-2a-3b)2.判断:下列各式能不能写成平方差的形式(能画“√”,并分解,不能的画“×”)(1)x2+64();(2)-x2-4y2()(3)9x2-16y4();(4)-x6+9n2()(5)-9x2-(-y)2();(6)-9x2+(-y)2()(7)(-9x)2-y2();(8)(-9x)2-(-y)2()(二).★★选择题1.下列各式中,能用平方差公式分解因式的是()A.−a2+b2B.−a2−b2C.a2+b2D.a3−b32.(x+1)2-y2分解因式是()A.(x+1-y)(x+1+y)B.(x+1+y)(x-1+y)C.(x+1-y)(x-1-y)D.(x+1+y)(x-1-y)(三)、★★★填空:1.填空(把下列各式因式分解)(1)1−p2=____________(2)49c2−36=________________(3)m29−n4256=__________(4)−0.25a2m2+9=______________(5)4−x2n=______________(6)(a+b)2−1=__________________2.把下列各式分解因式(1)x5−x3=x3(_____)=________________________(2)2ab3−2ab=2ab(________)=__________________(3)x3−16x=x(________)=___________________(4)3ax2−3ay4=2ab(________)=___________________(四)、★★★★把下列各式分解因式:(1)x2−4y2=__________________________(2)81x4−4y2=_______________________(3)4a2-(b+c)2=_______________________(4)(4x-3y)2-16y2=___________________(5)-4(x+2y)2+9(2x-y)2=____________________________(6)(a+b+c)2-(a-b-c)2=