电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国120套)2013年中考数学试卷分类汇编四边形(正方形)VIP免费

(全国120套)2013年中考数学试卷分类汇编四边形(正方形)_第1页
1/37
(全国120套)2013年中考数学试卷分类汇编四边形(正方形)_第2页
2/37
(全国120套)2013年中考数学试卷分类汇编四边形(正方形)_第3页
3/37
正方形1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.解答:解: 四边形ABCD是正方形,∴∠BAC=∠DAC=45°. 在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP. 正方形ABCD中AC⊥BD,又 PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又 PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确; 四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,1O48816t(s)S()(A)O48816t(s)S()(B)O48816t(s)S()(C)O48816t(s)S()(D)∴PE2+PF2=PO2,故③正确. △BNF是等腰直角三角形,而△POF不一定是,故④错误; △AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又 △AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.故选B.点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.2、(2013年临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OE的面积为s(2cm),则s(2cm)与t(s)的函数关系可用图像表示为答案:B解析:经过t秒后,BE=CF=t,CE=DF=8-t,1422BECStt,211(8)422ECFStttt,1(8)41622ODFStt,2F(第12题图)ABCDOE所以,2211322(4)(162)41622OEFStttttt,是以(4,8)为顶点,开口向上的抛物线,故选B。3、(8-3矩形、菱形、正方形·2013东营中考)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有()A.4个B.3个C.2个D.1个12.B.解析:在正方形ABCD中,因为CE=DF,所以AF=DE,又因为AB=AD,所以,所以AE=BF,,,因为,所以,即,所以AE⊥BF,因为S四边形DEOF,所以S四边形DEOF,故(1),(2),(4)正确.4、(2013凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解: 四边形ABCD是菱形,∴AB=BC, ∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.35、(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80考点:勾股定理;正方形的性质.分析:由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.解答:解: ∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=100﹣×6×8=76.故选C.点评:本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国120套)2013年中考数学试卷分类汇编四边形(正方形)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部