电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

简单的线性规划问题VIP免费

简单的线性规划问题_第1页
1/15
简单的线性规划问题_第2页
2/15
简单的线性规划问题_第3页
3/15
xyo简单的线性规划问题2一..学习目标1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。3【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解4一、实际问题某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?按甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组+2y8284x1644y123x00y00xxyxyxy将上述不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)就代表所有可能的日生产安排。yx4843o若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用那种生产安排利润最大?设工厂获得的利润为z,则z=2x+3y把z=2x+3y变形为它表示斜率为的直线系,z与这条直线的截距有关。233zyx23如图可见,当直线经过可行域上的点M时,截距最大,即z最大。M二、基本概念yx4843o把求最大值或求最小值的的函数称为目标函数,因为它是关于变量x、y的一次解析式,又称线性目标函数。满足线性约束的解(x,y)叫做可行解。在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。一组关于变量x、y的一次不等式,称为线性约束条件。由所有可行解组成的集合叫做可行域。使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。可行域可行解最优解7例1、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA0.1050.070.14B0.1050.140.07分析:将已知数据列成表格三、例题8解:设每天食用xkg食物A,ykg食物B,总成本为z,那么++0.1050.1050.0757750.070.140.0671460.140.070.0614760000xyxyxyxyxyxyxxyy目标函数为:z=28x+21y作出二元一次不等式组所表示的平面区域,即可行域9把目标函数z=28x+21y变形为xyo5/75/76/73/73/76/74321zyx它表示斜率为随z变化的一组平行直线系34是直线在y轴上的截距,当截距最小时,z的值最小。21zM如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小。10M点是两条直线的交点,解方程组7751476xyxy得M点的坐标为:1747xy所以zmin=28x+21y=16由此可知,每天食用食物A143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元。11四、练习题:1、求z=2x+y的最大值,使x、y满足约束条件:11yxxyy+-2、求z=3x+5y的最大值,使x、y满足约束条件:53151x53xyyxy++-121.解:作出平面区域xyABCo11yxxyy+-z=2x+y作出直线y=-2x+z的图像,可知z要求最大值,即直线经过C点时。求得C点坐标为(2,-1),则Zmax=2x+y=3132.解:作出平面区域xyoABC53151x53xyyxy++-z=3x+5y作出直线3x+5y=z的图像,可知直线经过A点时,Z取最大值;直线经过B点时,Z取最小值。求得A(1.5,2.5),B(-2,-1),则Zmax=17,Zmin=-11。14解线性规划问题的步骤:(1)画:画出线性约束条件所表示的可行域;(2)移:在线性目标函数所表示的一组平行...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

简单的线性规划问题

您可能关注的文档

精品文档+ 关注
实名认证
内容提供者

中小学学习资料大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部