中考命题要求读书能及格,努力能良好,刻苦能优秀;一般理解能及格,基本掌握能良好,灵活运用能优秀。回归教材回归教材考点聚焦考点聚焦归类探究归类探究解直角三角形的应用回归教材回归教材考点聚焦考点聚焦归类探究归类探究考点聚焦考点解直角三角形的应用常用知识1.仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.2.俯角:视线在水平线下方的叫俯角.3.坡度:坡面的铅直高度h和水平宽度L的比叫做坡面的坡度(或坡比),记作i=___.4.坡角:坡面与水平面的夹角叫做坡角,记作α.i=tanα,坡度越大,α角越大,坡面越陡.5.方位角:指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.h∶l在解直角三角形及应用时经常接触到的一些概念lhα(2)坡度i=hl概念的识记(1)仰角和俯角视线铅垂线水平线视线仰角俯角(3)方位角30°45°BOA东西北南α为坡角=tanα什么是解直角三角形?由直角三角形中除直角外的已知元素,求未知元素的过程,叫做解直角三角形.如图:RtABC中,C=90,则其余的5个元素之间关系?CABbca返回解直角三角形1.两锐角之间的关系:2.三边之间的关系:3.边角之间的关系∠A+B=90∠0a2+b2=c2ACBabcsinA=accosA=bctanA=ab探究一利用直角三角形解决和高度(或宽度)有关的问题命题角度:1.计算某些建筑物的高度(或宽度);2.将实际问题转化为直角三角形问题.归类探究例1[2013·宜宾]宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图23-1①),喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(据说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度,如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(结果保留整数)变式题[2013·宜宾]如图23-2,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°;在A、C之间选择一点B(A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75°,且A、B间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).图23-2方法点析在实际测量高度、宽度、距离等问题中,常结合视角知识构造直角三角形,利用三角函数或相似三角形来解决问题.常见的构造的基本图形有如下几种:①不同地点看同一点;图23-3考点聚焦归类探究回归教材②同一地点看不同点;③利用反射构造相似.第23课时┃解直角三角形的应用图23-4图23-5考点聚焦归类探究回归教材练习.某商场准备改善原有楼梯的安全性能,把倾角由原来的400减至350,已知原楼梯的长度为4m,调整后的楼梯会加长多少?(结果精确到0.01m).sin350=0.57,sin400=0.64ABCD┌4m350400探究二利用直角三角形解决航海问题命题角度:1.利用直角三角形解决方位角问题;2.将实际问题转化为直角三角形问题.第23课时┃解直角三角形的应用例2[2013·烟台]练习如图24-4,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/小时的速度向西北方向航行.我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)图24-4命题角度:1.利用直角三角形解决坡度问题;2.将实际问题转化为直角三角形问题.探究三利用直角三角形解决坡度问题例3[2013·广安]如图23-7,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1∶2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?i=1:3DCAB练习:某校初三课外活动小组,在测量树高的一次活动中,如下图所示,测得树底部中心A到斜坡底C的水平距离为8.8m,在阳光下某一时刻测得1米的标杆影长0.8m,树影落在斜坡上的部分CD=3.2m。已知斜坡CD的坡比i=1:,求树高AB。(结果保留整数,参考数...