18.1.2平行四边形的判定(1)平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:对边相等,对边平行,对角相等,邻角互补,对角线互相平分。?判定性质定义DABC温故知新判定性质定义DABC问题如何寻找平行四边形的判定方法?预习检测1、在四边形ABCD中,AB=5,BC=4,CD=5,要使四边形ABCD是平行四边形,则AD=————2、在四边形ABCD中,是平行四边形,则∠B和∠D具有什么关系?3、若四边形ABCD中,AC,BD相交于点O,要判定它为平行四边形,则对角线的关系应满足_______________。若∠A=∠C要使四边ABCD两组对边分别相等的四边形是平行四边形平行四边形的性质猜想对边相等对角相等对角线互相平分两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形思考:这些猜想正确吗?探究新知证明:连接BD.∵AB=CD,AD=BC,BD是公共边,∴△ABD≌△CDB.∴∠1=∠2,∠3=∠4.∴AB∥DC,AD∥BC.∴四边形ABCD是平行四边形.如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.两组对边分别相等的四边形是平行四边形.判定定理1猜想1DABC1234证明:∵多边形ABCD是四边形,∴∠A+∠B+∠C+∠D=360°.又∵∠A=∠C,∠B=∠D,∴∠A+∠B=180°,∠B+∠C=180°.∴AD∥BC,AB∥DC.∴四边形ABCD是平行四边形.如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.两组对角分别相等的四边形是平行四边形.判定定理2猜想2DABC如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.对角线互相平分的四边形是平行四边形.判定定理3DABCO猜想3证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB.∴∠OAD=∠OCB.∴AD∥BC.同理AB∥DC.∴四边形ABCD是平行四边形.现在,我们一共有哪些判定平行四边形的方法呢?定义:两组对边分别平行的四边形叫做平行四边形.判定定理:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形.归纳证明:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.∴AB∥DC.又∵DC=EF,DE=CF,∴四边形DCFE也是平行四边形.∴DC∥EF.∴AB∥EF.练习1如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.ABCDEF走向练兵场练习2如图,ABCD中,E,F分别是对角线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.ABCDEFO还有其他证明方法吗?你更喜欢哪一种证法.启示:条件对角线简便的证明方法边,角ABCDEFO在上题中,若点E,F分别在AC两侧的延长线上,如图,其他条件不变,结论还成立吗?请证明你的结论.平行四边形的判定定理:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形.课堂小结作业本:教科书第47页练习第1,2,4题;习题18.1第4,5题。家庭作业:练习册相关习题。课后作业