2012年全国各地中考数学真题分类汇编第24章直角三角形与勾股定理一.选择题1.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积。专题:计算题。分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.用心爱心专心12.(2012毕节)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AC的长是()A.23B.2C.43D.4解析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.解答:解: ∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°, DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°, BD=1,∴CD=2=AD,∴AB=1+2=3,在△BCD中,由勾股定理得:CB=3,在△ABC中,由勾股定理得:AC=22BCAB=32,故选A.点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.3.(2012湖州)如图,在Rt△ABC中,∠ACB=900,AB=10,CD是AB边上的中线,则CD的长是()A.20B.10C.5D.25用心爱心专心2【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5.【答案】选:C.【点评】此题考查的是直角三角形的性质,属于基础题。4.(2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.54C.10或54D.10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22,1054)44()32(22故选C.点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.用心爱心专心3ABCD5.(2012•荆门)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.解析:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.6.(2012巴中)如图3,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=ACB.∠BAC=900C.BD=ACD.∠B=450【解析】由条件A,与直角三角形全等的判定“斜边、直角边”用心爱心专心4可判定△ABD≌△ACD,其它条件均不能使△ABD≌△ACD,故选A【答案】A【点评】本题考查直角三角形全等的判定“斜边、直角边”应用.二.填空题7.(2012巴中)已知a、b、c是△ABC的三边长,且满足关系+|a-b|=0,则△ABC的形状为______【解析】由关系+|a-b|=0,得c2-a2-b2=0,即a2+b2=c2,且a-b=0即a=b,∴△ABCJ是等腰直角三角形.应填等腰直角三角形.【答案】等腰直角三角形【点评】本题考查非负数的一个性质:“两个非负数之和为零时,这两个非负数同时为零.”及勾股定理逆定理的应用.8(2012泸州)如图,在△ABC中,∠C=90°,∠A=30°,若AB=6cm...