1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n个不同元素中取出m个(mn)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n个不同元素中取出m个元素(mn)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作mnC.一般地,求从n个不同元素中取出的m个元素的排列数nmP可分成以下两步:第一步:从n个不同元素中取出m个元素组成一组,共有mnC种方法;第二步:将每一个组合中的m个元素进行全排列,共有mmP种排法.根据乘法原理,得到mmmnnmPCP.因此,组合数12)112321mmnnmmPnnnnmCPmmm()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:mnmnnCC(mn)这个公式的直观意义是:mnC表示从n个元素中取出m个元素组成一组的所有分组方法.nmnC表示从n个元素中取出(nm)个元素组成一组的所有分组方法.显然,从n个元素中选出m个元素的分组方法恰是从n个元素中选m个元素剩下的(nm)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255CC.规定1nnC,01nC.例题精讲知识要点教学目标7-5-2.组合的基本应用(二)模块一、组合之几何问题【例1】在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:⑴直线段;⑵三角形;⑶四边形.【考点】组合之基本运用【难度】3星【题型】解答【解析】由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段;在10个点中取3个点,就可以画出一个三角形;在10个点中取4个点,就可以画出一个四边形,三个问题都是组合问题.由组合数公式:⑴可画出221010221094521PCP(条)直线段.⑵可画出331010331098120321PCP(个)三角形.⑶可画出44101044109872104321PCP(个)四边形.【答案】⑴21045C⑵310120C⑶410210C【巩固】平面内有10个点,以其中每2个点为端点的线段共有多少条?【考点】组合之基本运用【难度】2星【题型】解答【解析】这道题不考虑线段两个端点的顺序,是组合问题,实际上是求从10个元素中取出2个元素的组合数,由组合数公式,2101094521C,所以以10个点中每2个点为端点的线段共有45条.【答案】45【巩固】在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个?【考点】组合之基本运用【难度】2星【题型】解答【解析】三角形的形状与三个顶点选取的先后顺序无关,所以这是一个组合问题,实际上是求从7个点中选出3个点的选法,等于3776535321C(种).【答案】3735C【例2】平面内有12个点,其中6点共线,此外再无三点共线.⑴可确定多少个三角形?⑵可确定多少条射线?【考点】组合之基本运用【难度】3星【题型】解答【解析】⑴分三类:①有2个顶点在共线的6点中,另1个顶点在不共线的6点中的三角形有2665669021C个;②有1个顶点在共线的6点中,另2个顶点在不共线的6点中的三角形有2665669021C(个);③3个顶点都在不共线的6点中的三角形有3665420321C个.根据加法原理,可确定909020200个三角形.⑵两点可以确定两条射线,分三类:①共线的6点,确定10条射线;②不共线的6点,每两点确定两条射线,共有2665223021C(条)射线;③从共线的6点与不共线的6点中各取一...