第1页共3页指数式与对数式一、知识归纳:1.幂的有关概念(1)正整数指数幂)(Nnaaaaann个(2)零指数幂)0(10aa(3)负整数指数幂10,nnaanNa(4)正分数指数幂0,,,1mnmnaaamnNn;(5)负分数指数幂110,,,1mnmnmnaamnNnaa(6)0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理数指数幂的性质10,,rsrsaaaarsQ20,,srrsaaarsQ30,0,rrrabababrQ3.根式的内容(1)根式的定义:一般地,如果axn,那么x叫做a的n次方根,其中Nnn,1,na叫做根式,n叫做根指数,a叫被开方数。(2)根式的性质:①当n是奇数,则aann;当n是偶数,则00aaaaaann②负数没有偶次方根,③零的任何次方根都是零4.对数的内容(1)对数的概念如果)1,0(aaNab,那么b叫做以a为底N的对数,记)1,0(logaaNba(2)对数的性质:①零与负数没有对数②01loga③1logaa(3)对数的运算性质NMMN①aaalogloglogNMNM②aaalogloglogMnM③analoglog其中a>0,a≠0,M>0,N>0(4)对数换底公式:)10,10,0(logloglogmmaaNaNNmma且且二、题型归纳:1、指数式与对数式的基本运算。例1计算下列各式①)0,0()21(24833323323134baaabaabbbaa②12lg)2(lg5lg2lg)2(lg222③06.0lg61lg)2(lg)1000lg8(lg5lg232.求值证明问题例2已知42121aa,求下列各式的值(1)1aa(2)21212323aaaa第2页共3页3.换底公式及应用例3(1)已知4.1log,35log75求m(2)若aaa3)3(416log:,27log612求证4.指对数互化例4、已知x,y,z为正数,满足zyx643。求证:xzy1121三、巩固练习:1.计算:(1)121316324(124223)27162(8);(2)2(lg2)lg2lg50lg25;(3)3948(log2log2)(log3log3).2、.3、4、已知11223xx,求22332223xxxx的值.5、已知35abc,且112ab,求c的值.6、已知a、b、c均是不等于1的正数,且0111zyxcbazyx,求abc的值的值求已知的值求nmaaanm2832241log,log)(log)(.log,log56733122的式子表示试用已知baa,b第3页共3页参考答案:例1解:(1)原式=16660814636256161)866()2()3()23()6(1612223123(2)原式=aabaabaaaabaababbaa313131313131313131313132313132312)2(224)8((3)原式=1)2lg1()5lg2(lg2lg)12(lg)5lg2lg2(2lg2(4)原式=12325lg32lg325lg32lg32lg5lg322lg3)32lg3(5lg22例2解:(1)42121aa两边平方得1416211aaaa(2)原式=151)1)(()()(12121121212121321321aaaaaaaaaaaa例3解:(1)17log7log135log555mm127log7log17log)751(log4.1log55557mm(2)aaa232log2log21312log27log27log333312341232412231322log12log46log16log16log33336aaaaaaaaa例4、ykkkxzkkkk21log214log212log3log6loglog1log1114361、解:(1)原式12133(1)246324(113)3228213332113322211338811.(2)原式22(lg2)(1lg5)lg2lg5(lg2lg51)lg22lg5(11)lg22lg52(lg2lg5)2.(3)原式lg2lg2lg3lg3lg2lg2lg3lg3()()()()lg3lg9lg4lg8lg32lg32lg23lg23lg25lg352lg36lg24.4、解:∵11223xx,∴11222()9xx,∴129xx,∴17xx,∴12()49xx,∴2247xx,又∵331112222()(1)3(71)18xxxxxx,∴223322247231833xxxx5、解:由3ac得:log31ac,即log31ca,∴1log3ca;同理可得1log5cb,∴由112ab得log3log52cc,∴log152c,∴215c,∵0c,∴15c.6、答案:1