10.1.4概率的基本性质[A基础达标]1.某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为()A.0.40B.0.30C.0.60D.0.90解析:选A.依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故不够8环的概率为1-0.60=0.40.2.(2019·陕西省咸阳市检测(一))某校高三(1)班50名学生参加1500m体能测试,其中23人成绩为A,其余人成绩都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是()A.0.14B.0.20C.0.40D.0.60解析:选A.由于成绩为A的有23人,故抽到C的概率为1--0.4=0.14.故选A.3.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.解析:选D.记3个红球分别为a1,a2,a3,2个白球分别为b1,b2,从3个红球、2个白球中任取3个,则所包含的基本事件有(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),(a1,b1,b2),(a2,b1,b2),(a3,b1,b2),共10个.由于每个基本事件发生的机会均等,因此这些基本事件的发生是等可能的.用A表示“所取的3个球中至少有1个白球”,则其对立事件A表示“所取的3个球中没有白球”,则事件A包含的基本事件有1个:(a1,a2,a3),所以P(A)=.故P(A)=1-P(A)=1-=.4.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A∪B)=()A.B.C.D.1解析:选B.法一:A包含向上点数是1,3,5的情况,B包含向上的点数是1,2,3的情况,所以A∪B包含了向上点数是1,2,3,5的情况.故P(A∪B)==.法二:P(A∪B)=P(A)+P(B)-P(AB)=+-=1-=.5.从1,2,3,…,30这30个数中任意摸出一个数,则事件“摸出的数是偶数或能被5整除的数”的概率是()A.B.C.D.解析:选B.法一:这30个数中“是偶数”的有15个,“能被5整除的数”有6个,这两个事件不互斥,既是偶然又能被5整除的数有3个,所以事件“是偶数或能被5整除的数”包含的样本点是18个,而样本点共有30个,所以所求的概率为=.法二:设事件A“摸出的数为偶数”,事件B“摸出的数能被5整除”,则P(A)=,P(B)==,P(A∩B)==所以P(A∪B)=P(A)+P(B)-P(A∩B)=+-=.6.已知P(A)=0.4,P(B)=0.2.(1)如果B⊆A,则P(A∪B)=________,P(AB)=________;(2)如果A,B互斥,则P(A∪B)=________,P(AB)=________.解析:(1)因为B⊆A,所以P(A∪B)=P(A)=0.4,P(AB)=P(B)=0.2.(2)如果A,B互斥,则P(A∪B)=P(A)+P(B)=0.4+0.2=0.6.P(AB)=P(∅)=0答案:(1)0.40.2(2)0.607.事件A,B互斥,它们都不发生的概率为,且P(A)=2P(B),则P(A)=________.解析:因为事件A,B互斥,它们都不发生的概率为,所以P(A)+P(B)=1-=.又因为P(A)=2P(B),所以P(A)+P(A)=,所以P(A)=.答案:8.某商店月收入(单位:元)在下列范围内的概率如下表所示:月收入[1000,1500)[1500,2000)[2000,2500)[2500,3000)概率0.12ab0.14已知月收入在[1000,3000)内的概率为0.67,则月收入在[1500,3000)内的概率为________.解析:记这个商店月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000)范围内的事件分别为A,B,C,D,因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.答案:0.559.已知数学考试中,李明成绩高于90分的概率为0.3,大于等于60分且小于等于90分的概率为0.5,求:(1)李明成绩大于等于60分的概率;(2)李明成绩低于60分的概率.解:记A:李明成绩高于90分,B:李明成绩大于等于60分且小于等于90分,则不难看出A与B互斥,且P(A)=0.3,P(B)=0.5.(1)因为“李明成绩大于等于60分”可表示为A∪B,由A与B互斥可知P(A∪B)=P(A)+P(B)=0.3+0.5=0.8.(2)因为“李明成绩低于60分”可表示为A∪B,因此P(A∪B)=1-P(A∪B)=1-0.8=0.2.10.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮...