专题突破练175.1~5.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.(2018河北衡水中学考前仿真,文3)已知一个四棱锥的正视图和俯视图如图所示,则该几何体的侧视图为()2.(2018宁夏银川一中一模,理4)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A'B'C'的面积为()A.a2B.a2C.a2D.a23.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.34.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.5.(2018河南郑州三模,理7)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则()A.3∈AB.5∈AC.2∈AD.4∈A6.(2018河北唐山三模,理7)某三棱锥的三视图如图所示,则其体积为()A.4B.8C.D.7.已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥A-B1DC1的体积为()A.3B.C.1D.8.(2018河南濮阳一模,理7)已知三棱锥A-BCD中,△ABD与△BCD是边长为2的等边三角形且二面角A-BD-C为直二面角,则三棱锥A-BCD的外接球的表面积为()A.B.5πC.6πD.9.(2018百校联盟四月联考,理12)在三棱锥A-BCD中,AB=AC,DB=DC,AB+DB=4,AB⊥BD,则三棱锥A-BCD外接球的体积的最小值为()A.B.C.D.二、填空题(共3小题,满分15分)10.(2018江苏卷,10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018天津卷,理11)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.12.正△ABC的三个顶点都在球O的球面上,AB=AC=2,若三棱锥O-ABC的体积为2,则该球的表面积为.三、解答题(共3个题,分别满分为13分,13分,14分)13.(2018河北唐山一模,理19)如图,在三棱柱ABC-A1B1C1中,平面A1B1C⊥平面AA1C1C,∠BAC=90°.(1)证明:AC⊥CA1;(2)若△A1B1C是正三角形,AB=2AC=2,求二面角A1-AB-C的大小.14.(2018河北唐山三模,理19)如图,四棱锥P-ABCD的底面ABCD是平行四边形,∠BAC=∠PAD=∠PCD=.(1)求证:平面PAB⊥平面ABCD;(2)若AB=AC=PA=3,E为BC的中点,F为棱PB上的点,PD∥平面AEF,求二面角A-DF-E的余弦值.15.在如图所示的几何体中,四边形ABCD为矩形,直线AF⊥平面ABCD,EF∥AB,AD=2,AB=AF=2EF=1,点P在棱DF上.(1)求证:AD⊥BF;(2)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(3)若,求二面角D-AP-C的余弦值.参考答案专题突破练175.1~5.3组合练1.A解析四棱锥的正视图和俯视图可知几何体的直观图如图所示,其侧视图为选项A.2.D解析如图①②所示的平面图形和直观图.由②可知,A'B'=AB=a,O'C'=OC=a,在图②中作C'D'⊥A'B'于D',则C'D'=O'C'=a.∴S△A'B'C'=A'B'·C'D'=aa=a2.3.B解析由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A-BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED=1×1=,S△ABC=S△ABE=1,S△ACD=1,故选B.4.C解析由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V1=π×32×6-π×22×4-π×32×2=20π(cm3),原来毛坯体积V2=π×32×6=54π(cm3).故所求比值为5.D解析根据三视图可知几何体是一个三棱柱截去一个三棱锥,如图所示,四边形ABCD是一个边长为4的正方形,且AF⊥面ABCD,DE∥AF,DE=4,AF=2,∴AF⊥AB,DE⊥DC,DE⊥BD,∴EC==4,EF=FB==2,BE==4 A为此几何体所有棱的长度构成的集合,∴A={2,4,4,4,2}.6.C解析由三棱锥的三视图得其直观图如下:几何体为底面是等腰直角三角形的三棱锥A-BCD,BC=CD=2,三棱锥的高为2,所以三棱锥的体积为V=2×2×2=7.C解析 D是等边三角形ABC的边BC的中点,∴AD⊥BC.又ABC-A1B1C1为正三棱柱,∴AD⊥平面BB1C1C. 四边形BB1C1C为矩形,2又AD=2,AD==1.故选C.8.D解析如图所示.△ABD与△BCD是边长为2的等边三角形,且二面角A-BD-C为直二面角,设F,E分别为△ABD和△BCD的中心,则球心O为△ABD和△BCD的过中心的垂线的交点,所以OF=OE=FG=2=ED=2=,则球半径r=,则S=4π9.C解析由AB=AC,DB=DC,得△ABD≌△ACD,所以AC⊥CD,所以AD中点O为三棱锥A-BCD外接球的球心,其球的半径R=所以三棱锥A-BCD外接球的体积V)3=故选...