电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

排列上课用课件VIP免费

排列上课用课件_第1页
1/22
排列上课用课件_第2页
2/22
排列上课用课件_第3页
3/22
www.jkzyw.com探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用怎样的数学模型来刻画探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动,有多少种不同的选法?分析:把题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法?上午下午相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙第一步:确定参加上午活动的同学即从3名中任选1名,有3种选法.第二步:确定参加下午活动的同学,有2种方法根据分步计数原理:3×2=6即共6种方法。www.jkzyw.com把上面问题中被取的对象叫做元素,于是问题1就可以叙述为:从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?ab,ac,ba,bc,ca,cb问题2从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?第1步,确定百位上的数字,有4种方法第2步,确定十位上的数字,有3种方法第3步,确定个位上的数字,有2种方法根据分步乘法计数原理,共有4×3×2=24种不同的排法。如下图所示1234443322444333111244431112224333111222有此可写出所有的三位数:123,124,132,134,142,143;213,214,231,234,241,243,312,314,321,324,341,342;412,413,421,423,431,432。同样,问题2可以归结为:从4个不同的元素a,b,c,d中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc;bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb;dab,dac,dba,dbc,dca,dcb.思考?上述两个问题的共同特点是?能否推广到一般?(1)有顺序的(2)不论是排列之前,还是之后,所有的元素都不相等,推广到一般排列:一般的,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列问题实际包含两个过程:(1)先从n个不同元素中取出m个不同的元素。(2)再把这m个不同元素按照一定的顺序排成一列。注意:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。4、m<n时的排列叫选排列,m=n时的排列叫全排列。5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。例1、下列问题中哪些是排列问题?www.jkzyw.com(8)以圆上的10个点中的某一点为起点,作过另一个点的射线(9)有10个车站,共需要多少种车票?(10)安排5个学生为班里的5个班干部,每人一个职位?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦2、排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号表示。mnA“排列”和“排列数”有什么区别和联系?排列数,而不表示具体的排列。所有排列的个数,是一个数;mn“排列数”是指从个不同元素中,任取个元素的mnA所以符号只表示nm“一个排列”是指:从个不同元素中,任取按照一定的顺序排成一列,不是数;个元素问题1中是求从3个不同元素中取出2个元素的排列数,记为,23326A3443224A23A34A问题2中是求从4个不同元素中取出3个元素的排列数,记为,已经算出探究:从n个不同元素中取出2个元素的排列数是多少?,又各是多少?2nA)(mnAmn3nA第1位第2位nn-1An3An2)1(nn)2)(1(nnn第1位第2位第3位n-2nn-1)1()2()1(mnnnnAmn······第1位第2位第3位第m位nn-1n-2n-(m...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

排列上课用课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部