1时,p(x)0.即F(x)在(-2,x1)递减,在(x1,+∞)递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-x12-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F'(x)=2e2(x+2)(ex-e-2).从而当x>-2时,F'(x)>0,即F(x)在(-2,+∞)递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].6.解由f(x)=ex-alnx-e(a∈R),得f'(x)=ex-ax,当a<0时,f'(x)=ex-ax>0,f(x)在x∈[1,+∞)上递增,f(x)min=f(1)=0(合题意).当a>0时,f'(x)=ex-ax,当x∈[1,+∞)时,y=ex≥e.①当a∈(0,e]时,因为x∈[1,+∞),所以y=ax≤e,f'(x)=ex-ax≥0,f(x)在[1,+∞)上递增,f(x)min=f(1)=0(合题意).②当a∈(e,+∞)时,存在x0∈[1,+∞),满足f'(x)=ex-ax=0,f(x)在x0∈[1,x0)上递减,在(x0,+∞)上递增,故f(x0)
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容